Access the full text.
Sign up today, get DeepDyve free for 14 days.
D. Pysch, M. Bivour, M. Hermle, S. Glunz (2011)
Amorphous silicon carbide heterojunction solar cells on p-type substratesThin Solid Films, 519
Z. Holman, M. Filipič, A. Descoeudres, S. Wolf, F. Smole, M. Topič, C. Ballif (2013)
Infrared light management in high-efficiency silicon heterojunction and rear-passivated solar cellsJournal of Applied Physics, 113
A. Descoeudres, L. Barraud, R. Bartlome, G. Choong, S. Wolf, F. Zicarelli, C. Ballif (2010)
The silane depletion fraction as an indicator for the amorphous/crystalline silicon interface passivation qualityApplied Physics Letters, 97
Zhassulan Kadyrbekov, Zhumagul Boranbay
ORAL PRESENTATION
Z. Holman, A. Descoeudres, L. Barraud, F. Fernandez, J. Seif, S. Wolf, C. Ballif (2012)
Current Losses at the Front of Silicon Heterojunction Solar CellsIEEE Journal of Photovoltaics, 2
E. Yablonovitch (1982)
Statistical ray opticsJournal of the Optical Society of America, 72
(2011)
Thin Solid Films 519
M. Rauer, C. Schmiga, K. Ruhle, R. Woehl, M. Hermle, S. Glunz (2011)
Investigation of Aluminum-Alloyed Local Contacts for Rear Surface-Passivated Silicon Solar CellsIEEE Journal of Photovoltaics, 1
M. Hermle, F. Granek, O. Schultz, S. Glunz (2008)
Analyzing the effects of front-surface fields on back-junction silicon solar cells using the charge-collection probability and the reciprocity theoremJournal of Applied Physics, 103
E. Schneiderlochner, R. Preu, R. Lüdemann, S. Glunz (2002)
Laser‐fired rear contacts for crystalline silicon solar cellsProgress in Photovoltaics: Research and Applications, 10
(2006)
and G
T. Wang, T. Ciszek, C. Schwerdtfeger, H. Moutinho, R. Matson (1996)
Growth of silicon thin layers on cast MGSi from metal solutions for solar cellsSolar Energy Materials and Solar Cells
M. Taguchi, Ayumu Yano, S. Tohoda, Kenta Matsuyama, Yuya Nakamura, Takeshi Nishiwaki, K. Fujita, E. Maruyama (2013)
24.7% Record Efficiency HIT Solar Cell on Thin Silicon WaferIEEE Journal of Photovoltaics, 4
A. Descoeudres, L. Barraud, S. Wolf, B. Strahm, D. Lachenal, C. Guerin, Z. Holman, F. Zicarelli, B. Demaurex, J. Seif, J. Holovský, C. Ballif (2011)
Improved amorphous/crystalline silicon interface passivation by hydrogen plasma treatmentApplied Physics Letters, 99
(2010)
, pp . 1 – 6 . [ 12 ] M . J . Kerr and A . Cuevas
(2014)
presented at 4th SiliconPV Conference
(2013)
Energy Proc
M. Cleef, F. Rubinelli, R. Rizzoli, R. Pinghini, R. Schropp, W. Weg (1998)
Amorphous Silicon Carbide/Crystalline Silicon Heterojunction Solar Cells: A Comprehensive Study of the Photocarrier CollectionJapanese Journal of Applied Physics, 37
M. Rauer, A. Mondon, C. Schmiga, J. Bartsch, M. Glatthaar, S. Glunz (2013)
Nickel-plated Front Contacts for Front and Rear Emitter Silicon Solar CellsEnergy Procedia, 38
A. Cuevas (1999)
The effect of emitter recombination on the effective lifetime of silicon wafersSolar Energy Materials and Solar Cells, 57
M. Kerr, A. Cuevas (2002)
General parameterization of Auger recombination in crystalline siliconJournal of Applied Physics, 91
(2011)
IEEE Electron Device Lett
M. Rauer, R. Woehl, K. Rühle, C. Schmiga, M. Hermle, M. Hörteis, Daniel Biro (2011)
Aluminum Alloying in Local Contact Areas on Dielectrically Passivated Rear Surfaces of Silicon Solar CellsIEEE Electron Device Letters, 32
L. Barraud, Z. Holman, N. Badel, P. Reiß, A. Descoeudres, C. Battaglia, S. Wolf, C. Ballif (2013)
Hydrogen-doped indium oxide/indium tin oxide bilayers for high-efficiency silicon heterojunction solar cellsSolar Energy Materials and Solar Cells, 115
Z. Holman, A. Descoeudres, S. Wolf, C. Ballif (2013)
Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear ReflectorsIEEE Journal of Photovoltaics, 3
Reducing wafer thickness while increasing power conversion efficiency is the most effective way to reduce cost per Watt of a silicon photovoltaic module. Within the European project 20 percent efficiency on less than 100‐µm‐thick, industrially feasible crystalline silicon solar cells (“20plµs”), we study the whole process chain for thin wafers, from wafering to module integration and life‐cycle analysis. We investigate three different solar cell fabrication routes, categorized according to the temperature of the junction formation process and the wafer doping type: p‐type silicon high temperature, n‐type silicon high temperature and n‐type silicon low temperature. For each route, an efficiency of 19.5% or greater is achieved on wafers less than 100 µm thick, with a maximum efficiency of 21.1% on an 80‐µm‐thick wafer. The n‐type high temperature route is then transferred to a pilot production line, and a median solar cell efficiency of 20.0% is demonstrated on 100‐µm‐thick wafers.
Physica Status Solidi (A) Applications and Materials Science – Wiley
Published: Jan 1, 2015
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.