Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of gliomas

BAC array CGH distinguishes mutually exclusive alterations that define clinicogenetic subtypes of... The pathological classification of gliomas constitutes a critical step of the clinical management of patients, yet it is frequently challenging. To assess the relationship between genetic abnormalities and clinicopathological characteristics, we have performed a genetic and clinical analysis of a series of gliomas. A total of 112 gliomas were analyzed by comparative genomic hybridization on a BAC array with a 1 megabase resolution. Altered regions were identified and correlation analysis enabled to retrieve significant associations and exclusions. Whole chromosomes (chrs) 1p and 19q losses with centromeric breakpoints and EGFR high level amplification were found to be mutually exclusive, permitting identification of 3 distinct, nonoverlapping groups of tumors with striking clinicopathological differences. Type A tumors with chrs 1p and 19q codeletion exhibited an oligodendroglial phenotype and a longer patient survival. Type B tumors were characterized by EGFR amplification. They harbored a WHO high grade of malignancy and a short patient survival. Finally, type C tumors displayed none of the previous patterns but the presence of chr 7 gain, chr 9p deletion and/or chr 10 loss. It included astrocytic tumors in patients younger than in type B and whose prognosis was highly dependent upon the number of alterations. A multivariate analysis based on a Cox model shows that age, WHO grade and genomic type provide complementary prognostic informations. Finally, our results highlight the potential of a whole‐genome analysis as an additional diagnostic in cases of unclear conventional genetic findings. © 2007 Wiley‐Liss, Inc. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png International Journal of Cancer Wiley

Loading next page...
 
/lp/wiley/bac-array-cgh-distinguishes-mutually-exclusive-alterations-that-define-w40pZkL02X

References (48)

Publisher
Wiley
Copyright
"Copyright © 2008 Wiley Subscription Services, Inc., A Wiley Company"
ISSN
0020-7136
eISSN
1097-0215
DOI
10.1002/ijc.23270
pmid
18076069
Publisher site
See Article on Publisher Site

Abstract

The pathological classification of gliomas constitutes a critical step of the clinical management of patients, yet it is frequently challenging. To assess the relationship between genetic abnormalities and clinicopathological characteristics, we have performed a genetic and clinical analysis of a series of gliomas. A total of 112 gliomas were analyzed by comparative genomic hybridization on a BAC array with a 1 megabase resolution. Altered regions were identified and correlation analysis enabled to retrieve significant associations and exclusions. Whole chromosomes (chrs) 1p and 19q losses with centromeric breakpoints and EGFR high level amplification were found to be mutually exclusive, permitting identification of 3 distinct, nonoverlapping groups of tumors with striking clinicopathological differences. Type A tumors with chrs 1p and 19q codeletion exhibited an oligodendroglial phenotype and a longer patient survival. Type B tumors were characterized by EGFR amplification. They harbored a WHO high grade of malignancy and a short patient survival. Finally, type C tumors displayed none of the previous patterns but the presence of chr 7 gain, chr 9p deletion and/or chr 10 loss. It included astrocytic tumors in patients younger than in type B and whose prognosis was highly dependent upon the number of alterations. A multivariate analysis based on a Cox model shows that age, WHO grade and genomic type provide complementary prognostic informations. Finally, our results highlight the potential of a whole‐genome analysis as an additional diagnostic in cases of unclear conventional genetic findings. © 2007 Wiley‐Liss, Inc.

Journal

International Journal of CancerWiley

Published: Mar 15, 2009

Keywords: ; ; ; ;

There are no references for this article.