Access the full text.
Sign up today, get DeepDyve free for 14 days.
C. Westbrook, R. Ball, P. Field (2005)
Radar scattering by aggregate snowflakesQuarterly Journal of the Royal Meteorological Society, 132
R. Frey, S. Ackerman, R. Holz, S. Dutcher, Zach Griffith (2020)
The Continuity MODIS-VIIRS Cloud MaskRemote. Sens., 12
Yinghui Lu, Zhiyuan Jiang, K. Aydin, J. Verlinde, E. Clothiaux, G. Botta (2016)
A polarimetric scattering database for non-spherical ice particles at microwave wavelengthsAtmospheric Measurement Techniques, 9
J. Delanoë, A. Heymsfield, A. Protat, A. Bansemer, R. Hogan (2014)
Normalized particle size distribution for remote sensing applicationJournal of Geophysical Research: Atmospheres, 119
A. Heymsfield, A. Bansemer, C. Schmitt, C. Twohy, M. Poellot (2004)
Effective Ice Particle Densities Derived from Aircraft DataJournal of the Atmospheric Sciences, 61
Ting Liu, A. Moore, Alexander Gray (2006)
New Algorithms for Efficient High-Dimensional Nonparametric Classification
J. Gong, Dong Wu (2016)
Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements.Atmospheric chemistry and physics, 17 4
M. Kumjian, A. Ryzhkov (2012)
The Impact of Size Sorting on the Polarimetric Radar VariablesJournal of the Atmospheric Sciences, 69
J. Delanoë, A. Protat, J. Testud, D. Bouniol, A. Heymsfield, A. Bansemer, P. Brown, R. Forbes (2005)
Statistical properties of the normalized ice particle size distributionJournal of Geophysical Research, 110
M. Grecu, L. Tian, W. Olson, S. Tanelli (2011)
A Robust Dual-Frequency Radar Profiling AlgorithmJournal of Applied Meteorology and Climatology, 50
C. Westbrook, R. Ball, P. Field (2008)
Corrigendum: Radar scattering by aggregate snowflakesQuarterly Journal of the Royal Meteorological Society, 134
S. Kneifel, M. Kulie, R. Bennartz (2011)
A triple‐frequency approach to retrieve microphysical snowfall parametersJournal of Geophysical Research, 116
T. Matejka, R. Houze, P. Hobbs (1980)
Microphysics and dynamics of clouds associated with mesoscale rainbands in extratropical cyclonesQuarterly Journal of the Royal Meteorological Society, 106
R. Houze, L. McMurdie, W. Petersen, M. Schwaller, William Baccus, J. Lundquist, C. Mass, Bart Nijssen, S. Rutledge, D. Hudak, S. Tanelli, G. Mace, M. Poellot, D. Lettenmaier, Joseph Zagrodnik, A. Rowe, Jennifer DeHart, L. Madaus, H. Barnes (2017)
THE OLYMPIC MOUNTAINS EXPERIMENT (OLYMPEX).Bulletin of the American Meteorological Society, 98 10
G. Skofronick-Jackson, W. Petersen, W. Berg, C. Kidd, E. Stocker, D. Kirschbaum, R. Kakar, S. Braun, G. Huffman, T. Iguchi, P. Kirstetter, C. Kummerow, R. Meneghini, R. Oki, W. Olson, Y. Takayabu, K. Furukawa, T. Wilheit (2017)
THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION FOR SCIENCE AND SOCIETY.Bulletin of the American Meteorological Society, 98 8
Lihua Li, G. Heymsfield, J. Carswell, D. Schaubert, M. McLinden, J. Creticos, Martin Perrine, M. Coon, Jaime Cervantes, M. Vega, S. Guimond, L. Tian, A. Emory (2016)
The NASA High-Altitude Imaging Wind and Rain Airborne ProfilerIEEE Transactions on Geoscience and Remote Sensing, 54
R. Hogan, A. Battaglia (2008)
Fast Lidar and Radar Multiple-Scattering Models. Part II: Wide-Angle Scattering Using the Time-Dependent Two-Stream ApproximationJournal of the Atmospheric Sciences, 65
J. Awaka, M. Le, V. Chandrasekar, N. Yoshida, T. Higashiuwatoko, T. Kubota, T. Iguchi (2016)
Rain Type Classification Algorithm Module for GPM Dual-Frequency Precipitation RadarJournal of Atmospheric and Oceanic Technology, 33
S. Kneifel, A. Lerber, Jussi Tiira, D. Moisseev, P. Kollias, J. Leinonen (2015)
Observed relations between snowfall microphysics and triple‐frequency radar measurementsJournal of Geophysical Research: Atmospheres, 120
M. Kanamitsu, J. Alpert, K. Campana, P. Caplan, D. Deaven, M. Iredell, Boris Katz, H. Pan, J. Sela, G. White (1991)
Recent Changes Implemented into the Global Forecast System at NMCWeather and Forecasting, 6
J. Delanoë, R. Hogan (2008)
A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometerJournal of Geophysical Research, 113
A. Heymsfield, A. Bansemer, P. Field, S. Durden, J. Stith, J. Dye, W. Hall, C. Grainger (2002)
Observations and Parameterizations of Particle Size Distributions in Deep Tropical Cirrus and Stratiform Precipitating Clouds: Results from In Situ Observations in TRMM Field CampaignsJournal of the Atmospheric Sciences, 59
K. Bower, S. Moss, Douglas Johnson, T. Choularton, J. Latham, P. Brown, A. Blyth, John Cardwell (1996)
A parametrization of the ice water content observed in frontal and convective cloudsQuarterly Journal of the Royal Meteorological Society, 122
C. Kummerow, D. Randel, M. Kulie, Nai-Yu Wang, R. Ferraro, S. Munchak, V. Petković (2015)
The Evolution of the Goddard Profiling Algorithm to a Fully Parametric SchemeJournal of Atmospheric and Oceanic Technology, 32
R. Lawson, D. O’Connor, P. Zmarzly, K. Weaver, B. Baker, Q. Mo, H. Jonsson (2006)
The 2D-S (Stereo) Probe: Design and Preliminary Tests of a New Airborne, High-Speed, High-Resolution Particle Imaging ProbeJournal of Atmospheric and Oceanic Technology, 23
A. Battaglia, K. Mroz, T. Lang, F. Tridon, S. Tanelli, L. Tian, G. Heymsfield (2016)
Using a multiwavelength suite of microwave instruments to investigate the microphysical structure of deep convective coresJournal of Geophysical Research. Atmospheres, 121
Wei Wu, G. McFarquhar (2016)
On the impacts of different definitions of maximum dimension for nonspherical particles recorded by 2D imaging probesJournal of Atmospheric and Oceanic Technology, 33
J. Leinonen, W. Szyrmer (2015)
Radar signatures of snowflake riming: A modeling studyEarth and Space Science (Hoboken, N.j.), 2
A. Heymsfield, A. Bansemer, N. Wood, Guosheng Liu, S. Tanelli, O. Sy, M. Poellot, Chuntao Liu (2017)
Toward Improving Ice Water Content and Snow-Rate Retrievals from Radars. Part II: Results from Three Wavelength Radar–Collocated In Situ Measurements and CloudSat–GPM–TRMM Radar DataJournal of Applied Meteorology and Climatology, 57
M. Kulie, M. Hiley, R. Bennartz, S. Kneifel, S. Tanelli (2014)
Triple-Frequency Radar Reflectivity Signatures of Snow: Observations and Comparisons with Theoretical Ice Particle Scattering ModelsJournal of Applied Meteorology and Climatology, 53
Guosheng Liu (2008)
A database of microwave single-scattering properties for nonspherical ice particlesBulletin of the American Meteorological Society, 89
K. Kuo, W. Olson, Benjamin Johnson, M. Grecu, L. Tian, T. Clune, B. Aartsen, A. Heymsfield, L. Liao, R. Meneghini (2016)
The Microwave Radiative Properties of Falling Snow Derived from Nonspherical Ice Particle Models. Part I: An Extensive Database of Simulated Pristine Crystals and Aggregate Particles, and Their Scattering PropertiesJournal of Applied Meteorology and Climatology, 55
M. Grecu, W. Olson, S. Munchak, S. Ringerud, L. Liao, Z. Haddad, B. Kelley, S. Mclaughlin (2016)
The GPM Combined AlgorithmJournal of Atmospheric and Oceanic Technology, 33
Ruth Petrie, S. Dance (2010)
Ensemble‐based data assimilation and the localisation problemWeather, 65
Lihua Li, G. Heymsfield, P. Racette, L. Tian, Ed Zenker (2004)
A 94-GHz Cloud Radar System on a NASA High-Altitude ER-2 AircraftJournal of Atmospheric and Oceanic Technology, 21
R. Sekhon, R. Srivastava (1970)
Snow Size Spectra and Radar ReflectivityJournal of the Atmospheric Sciences, 27
A. Heymsfield, C. Schmitt, A. Bansemer, C. Twohy (2010)
Improved Representation of Ice Particle Masses Based on Observations in Natural CloudsJournal of the Atmospheric Sciences, 67
Jeffrey Anderson (2003)
A Local Least Squares Framework for Ensemble FilteringMonthly Weather Review, 131
AbstractIn this study, a nonparametric method to estimate precipitating ice from multiple-frequency radar observations is investigated. The method does not require any assumptions regarding the distribution of ice particle sizes and relies on an efficient search procedure to incorporate information from observed particle size distributions (PSDs) in the estimation process. Similar to other approaches rooted in optimal-estimation theory, the nonparametric method is robust in the presence of noise in observations and uncertainties in the forward models. Over 200 000 PSDs derived from in situ observations collected during the Olympic Mountains Experiment (OLYMPEX) and Integrated Precipitation and Hydrology Experiment (IPHEX) field campaigns are used in the development and evaluation of the nonparametric estimation method. These PSDs are used to create a database of ice-related variables and associated computed radar reflectivity factors at the Ku, Ka, and W bands. The computed reflectivity factors are used to derive precipitating ice estimates and investigate the associated errors and uncertainties. The method is applied to triple-frequency radar observations collected during OLYMPEX and IPHEX. Direct comparisons of estimated ice variables with estimates from in situ instruments show results consistent with the error analysis. Global application of the method requires an extension of the supporting PSD database, which can be achieved through the processing of information from additional past and future field campaigns.
Journal of Applied Meteorology and Climatology – American Meteorological Society
Published: Nov 5, 2018
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.