Access the full text.
Sign up today, get DeepDyve free for 14 days.
J.G. Kingsolver, W.B. Watt (1983)
Thermoregulatory strategies in Colias butterflies: thermal stress and the limits to adaptation in temporally varying environmentsAm. Nat., 121
G.W. Fernandes, P.W. Price (1988)
Biogeographical gradients in galling species richness: tests of hypothesesOecologia, 76
M. Meguro, J.R. Pirani, R. Mello-Silva, A.M. Giulietti (1996)
Floristic and structural characterization of riparian forest island of Serra do Cipó, Minas Gerais.Bolet. Bot. Univ. São Paulo, 15
C.L. Boggs, D.D. Murphy (1997)
Community composition in mountain ecosystems: climatic determinants of montane butterfly distributionsGlbl Ecol. Biogeogr. Lett., 6
B.B. Simpson (1975)
Pleistocene changes in the flora of the high tropical AndesPaleobiology, 1
R.J.G. Leakey, J. Proctor (1987)
Invertebrates in the litter and soil at a range of altitudes on Gunung Silam, a small ultrabasic mountain in SabahJ. Trop. Ecol., 3
T.B. Smith (1997)
A Role for Ecotones in Generating Rainforest BiodiversityScience, 276
D.H. Janzen (1973)
Sweep Samples of Tropical Foliage Insects: Effects of Seasons, Vegetation Types, Elevation, Time of Day, and InsularityEcology, 54
G.W. Fernandes (1988)
Biogeographical gradients in galling species richnessOecologia, 76
Y. Basset (1992)
Influence of leaf traits on the spatial distribution of arboreal arthropods within an overstorey rainforest treeEcol. Entomol., 17
R. Goodland, M.G. Ferri (1979)
Ecologia do cerrado
A. Salatino (1993)
Chemical ecology and the theory of oligotrophic scleromorphismAn. Acad. Bras. Ciên, 65
A.M. Young (1982)
Population biology of tropical insects
E. Bernays, G.C. Driver, M. Bilgener (1989)
Herbivores and plant tanninsAdv. Ecol. Res., 19
S.P. Ribeiro (1994)
Phytophaga, 6
G. Sarmiento (1986)
High altitude tropical biogeography
A.P. Smith, T.P. Young (1987)
Tropical alpine plant ecologyAnn. Rev. Ecol. Syst, 18
G.W. Fernandes (1992)
The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitatsOecologia, 90
G.W. Fernandes, P.W. Price (1991)
Plant–animal interactions: evolutionary ecology in tropical and temperate regions
E. Bernays (1989)
Herbivores and Plant TanninsAdv. Ecol. Res., 19
J.H. Lawton (1987)
Effects of Altitude on the Abundance and Species Richness of Insect Herbivores on BrackenJ. Anim. Ecol., 56
G.W. Fernandes, P.W. Price (1992)
The adaptive significance of insect gall distribution: survivorship of species in xeric and mesic habitatsOecologia, 90
M.V. Galvão, E. Nimer (1965)
Geografia do Brasil – grande região leste
I.M. Turner (1994)
Sclerophylly: primarily protective?Func. Ecol, 8
D.H. Janzen (1976)
Changes in the Arthropod Community along an Elevational Transect in the Venezuelan AndesBiotropica, 8
N.E. Stork, M.J. Samways (1995)
Global Biodiversity Assessment
E.R. Pianka (1966)
Latitudinal gradients in species diversity: a review of conceptsAm. Nat., 100
J.R. Haslett (1997)
Insect communities and the spatial complexity of mountain habitatsGlbl Ecol. Biogeogr. Lett., 6
J.P. Dempster (1991)
The conservation of insects and their habitats
T.B. Smith, R.K. Wayne, D.J. Girman, M.W. Bruford (1997)
A role for ecotones in generating rainforest biodiversityScience, 276
R.O. Freitas (1951)
Revta. Brasil. Geogr., 2
G.W. Fernandes, L.M. Aráujo, M.A.A. Carneiro, T.G. Cornelissen, M.C. Barcelos-Greco, A.C.F. Lara, S.P. Ribeiro (1997)
Contribuiç ão ao conhecimento ecológico do cerrado – trabalhos selecionados do 3o Congresso de Ecologia do Brasil
C.J.F. Ter Braak (1986)
Canonical Correspondence Analysis: A New Eigenvector Technique for Multivariate Direct Gradient AnalysisEcology, 67
J.L. Krysan (1984)
Entomol. News, 95
I.M. Turner (1994)
Sclerophylly: Primarily Protective?Func. Ecol, 8
J.G. Kingsolver (1984)
Mechanistic Constraints and Optimality Models: Thermoregulatory Strategies in Colias ButterfliesEcology, 65
S.P. Ribeiro, M.A.A. Carneiro, G.W. Fernandes (1994)
Distribution of Brachypnoea (Coleoptera: Chrysomelidae) in an altitudinal gradient in a Brazilian savanna vegetationPhytophaga, 6
C.T. Rizzini (1979)
Tratado de fitogeografia do Brasil
A.C.F. Lara (1996)
The Highest Diversity of Galling Insects: Serra do Cipo, BrazilBiodivers. Lett., 3
G. Eiten (1972)
The cerrado vegetation of BrazilBot. Rev., 38
M.J. Samways (1995)
Insect conservation biology
A.M. Young (1982)
Population Biology of Tropical Insects
E.D. McCoy (1990)
The Distribution of Insects along Elevational GradientsOikos, 58
J.L. Krysan, T.F. Branson, R.F.W. Schroeder, W.E. Steiner (1984)
Elevation of Diabrotica sicuanica (Coleoptera: Chrysomelidae) to the species level with notes on the altitudinal distribution of Diabrotica species in the Cuzco Department of PeruEntomol. News, 95
R.J.G. Leakey (1987)
Invertebrates in the litter and soil at a range of altitudes on Gunung Silam, a small ultrabasic mountain in SabahJ. Trop. Ecol., 3
L. Wilkinson (1989)
SYSTAT: The System for Statistics
C.L. Boggs (1997)
Community Composition in Mountain Ecosystems: Climatic Determinants of Montane Butterfly DistributionsGlbl Ecol. Biogeogr. Lett., 6
M.A.A. Carneiro (1995)
Revta. Brasil Entomol., 39
B.B. Simpson (1975)
Pleistocene changes in the flora of the high tropical AndesPaleobiology, 1
J.P. Dempster (1991)
Fragmentation, Isolation and Mobility of Insect Populations
Y. Basset, G.A. Samuelson (1996)
Chrysomelidae biology vol 2: Ecological studies
D.H. Janzen (1967)
Why mountain passes are higher in the tropicsAm. Nat., 101
M. Meguro (1996)
Bolet. Bot. Univ. São Paulo, 15
A.C.F. Lara, G.W. Fernandes (1996)
The highest diversity of galling insects: Serra do Cipó, BrazilBiodivers. Lett., 3
M.A. McGeoch, S.L. Chown (1998)
Scaling up the value of bioindicatorsTREE, 13
R.O. Freitas (1951)
Ensaio sôbre o relêvo tectônico do BrasilRevta. Brasil. Geogr., 2
A. Salatino (1993)
An. Acad. Bras. Ciên, 65
P.D. Coley (1985)
Resource Availability and Plant Antiherbivore DefenseScience, 230
P.G.N. Digby, R.A. Kempton (1987)
Multivariate analysis of ecological communities
D.M. Olson (1994)
The distribution of leaf litter invertebrates along a Neotropical altitudinal gradientJ. Trop. Ecol, 10
G. Eiten (1972)
The cerrado vegetation of BrazilBot. Rev., 38
D.H. Janzen (1973)
Sweep samples of tropical foliage insects: effects of season, vegetation types, elevation, time of day, and insularityEcology, 54
M.S. Mani (1962)
Introduction to high altitude entomology. Insect life above the timber-line in the North-west Himalaya
J.H. Zar (1984)
Biostatistical Ecology
C. Chatfield, A.J. Collins (1996)
Introduction to multivariate analysis
J.R. Haslett (1997)
Insect Communities and the Spatial Complexity of Mountain HabitatsGlbl Ecol. Biogeogr. Lett., 6
G. Eiten (1978)
Delimitation of the cerrado conceptVegetatio, 36
D.H. Janzen, M. Ataroff, M. Farinas, S. Reyes, N. Rincon, A. Soler, P. Soriano, M. Vera (1976)
Changes in the arthropod community along elevational transect in the Venezuelan AndesBiotropica, 8
D.H. Janzen (1967)
Why Mountain Passes are Higher in the TropicsAm. Nat., 101
H. Wolda (1987)
Altitude, habitat and tropical insect diversityBiol. J. Linn. Soc, 30
M.A.A. Carneiro, S.P. Ribeiro, G.W. Fernandes (1995)
Artrópodos de um gradiente altitudinal na Serra do Cipó, Minas Gerais, BrazilRevta. Brasil Entomol., 39
J.G. Kingsolver, W.B. Watt (1984)
Mechanistic constraints and optimality models: thermoregulatory strategies in Colias butterfliesEcology, 65
M.A. McGeoch (1998)
TREE, 13
K.S. Brown (1997)
Diversity, disturbance, and sustainable use of Neotropical forests: insects as indicators for conservation monitoringJ. Insect Conserv., 1
Y. Basset (1992)
Ecol. Entomol., 17
M. Dufrêene (1997)
Ecol. Monogr., 67
G. Eiten (1978)
Delimitation of the cerrado conceptVegetatio, 36
K.S. Brown Jr (1997)
J. Insect Conserv., 1
A.P. Smith (1987)
Tropical Alpine Plant EcologyAnn. Rev. Ecol. Syst, 18
M. Meguro, J.R. Pirani, R. Mello-Silva, A.M. Giulietti (1996)
Establishment of riparian forests and forest island – ‘capõoes’ – in the grassland ecosystems of Espinhaço Range, Minas GeraisBolet. Bot. Univ. São Paulo, 15
H. Wolda (1987)
Altitude, habitat and tropical insect diversityBiol. J. Linn. Soc, 30
D.M. Olson (1994)
The distribution of leaf litter invertebrates along a neotropical altitudinal gradient.J. Trop. Ecol, 10
P.D. Coley, P. Bryant, F.S. Chapin (1985)
Resource availability and plant antiherbivore defenseScience, 230
C.J.F. Ter Braak (1986)
Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysisEcology, 67
M. Dufrêene, P. Legendre (1997)
Species assemblages and indicator species: the need for a flexible asymmetrical approachEcol. Monogr., 67
A.M. Giulietti, J.R. Pirani (1988)
Proceedings of a workshop on neotropical distribution patterns
I.K. Lopatin (1996)
Chrysomelidae biology vol 3: General studies
E.D. McCoy (1990)
The distribution of insects along elevational gradientsOikos, 58
M.A. Naves (1996)
Impactos de queimadas em áreas de cerrado e restinga
E.R. Pianka (1966)
Latitudinal Gradients in Species Diversity: A Review of ConceptsAm. Nat., 100
J.H. Lawton, M. MacGarvin, P.A. Heads (1987)
Effects of altitude on the abundance and species richness of insect herbivores on brackenJ. Anim. Ecol., 56
J.G. Kingsolver (1983)
Thermoregulatory Strategies in Colias Butterflies: Thermal Stress and the Limits to Adaptation in Temporally Varying EnvironmentsAm. Nat., 121
S. Knoll, M. Rowell-Rahier, P. Mardulyn, J.M. Pasteels (1996)
Chrysomelidae biology vol 1: The classification, phylogeny and genetics
The distribution of free-feeding insect herbivores in Brazilian savanna was studied in the National Park of Serra do Cipó. Insect samples were obtained with sweep nets across cerrado (savanna), rupestrian field and altitudinal grassland vegetation from 800 to 1500 m above sea level. We found a low species richness in xeric and mesic habitats during both wet and dry seasons. Sap-sucking insects were the most abundant guild (53.4%) with Cicadellidae the most abundant family (27.2%). The hypothesis that taxon richness of free-feeding insects decreases with increasing altitude was supported in xeric habitats during the wet season only, mainly as a function of mountain summit effect. There was a decrease of 65% in the number of families occurring at 1400 and 1500 m compared with lower elevations. The exclusion of sites of rupestrian vegetation at mid-elevations from the analysis increased significantly the proportion of variance explained by the model. An examination of taxon distribution using canonical variate analysis supported this result. The hypothesis that mesic habitats are richer in species of free-feeding insect herbivores than are xeric habitats was not supported. The data indicate that plant sclerophylly may exert a strong negative influence on insect species richness, and that variation due to particular characteristics of each site strongly affected the studied guilds. The present results should inform conservation strategies for the National Park Management Plan, which is currently being developed. © Rapid Science Ltd. 1998
Journal of Insect Conservation – Springer Journals
Published: Oct 1, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.