Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta

Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail,... Room‐temperature ionic liquids (ILs) are being promoted as environmentally friendly alternatives to volatile organic solvents currently used by industry. Because ILs are novel and not yet in widespread use, their potential impact on aquatic organisms is unclear. We studied the effects of several ILs on the survivorship and behavior (movement and feeding rates) of the freshwater pulmonate snail, Physa acuta. Median lethal concentrations (LC50s) of ILs with imidazolium‐ and pyridinium‐based cations and Br− and PF−6 as anions ranged from 1 to 325 mg/L. Toxicity was greatest for ILs with eight‐carbon alkyl chains attached to both imidazolium and pyridinium rings and declined with shorter alkyl chains, indicating a positive relationship between alkyl chain length and toxicity. Compared to controls, snails moved more slowly when exposed to butyl‐ and hexyl‐cation ILs at 1 to 3% of LC50 concentrations but were not affected at higher IL concentrations (4–10% of LC50), which is characteristic of U‐shaped dose‐response curves. Snail movement was not affected by ILs with octyl alkyl groups. Grazing patterns, however, indicated that snails grazed less at higher IL concentrations. Physa acuta egestion rates were reduced in the presence of ILs at 3 to 10% of LC50 concentrations. Thus, nonlethal IL concentrations affected P. acuta behaviors, potentially impacting individual fitness and food web interactions. These results provide initial information needed to assess the potential hazards of ILs should they reach freshwater ecosystems. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Environmental Toxicology and Chemistry Oxford University Press

Effects of ionic liquids on the survival, movement, and feeding behavior of the freshwater snail, Physa acuta

Loading next page...
 
/lp/oxford-university-press/effects-of-ionic-liquids-on-the-survival-movement-and-feeding-behavior-tASVJOqUCM

References (43)

Publisher
Oxford University Press
Copyright
"Copyright © 2005 Wiley Subscription Services, Inc., A Wiley Company"
ISSN
0730-7268
eISSN
1552-8618
DOI
10.1897/04-614r.1
Publisher site
See Article on Publisher Site

Abstract

Room‐temperature ionic liquids (ILs) are being promoted as environmentally friendly alternatives to volatile organic solvents currently used by industry. Because ILs are novel and not yet in widespread use, their potential impact on aquatic organisms is unclear. We studied the effects of several ILs on the survivorship and behavior (movement and feeding rates) of the freshwater pulmonate snail, Physa acuta. Median lethal concentrations (LC50s) of ILs with imidazolium‐ and pyridinium‐based cations and Br− and PF−6 as anions ranged from 1 to 325 mg/L. Toxicity was greatest for ILs with eight‐carbon alkyl chains attached to both imidazolium and pyridinium rings and declined with shorter alkyl chains, indicating a positive relationship between alkyl chain length and toxicity. Compared to controls, snails moved more slowly when exposed to butyl‐ and hexyl‐cation ILs at 1 to 3% of LC50 concentrations but were not affected at higher IL concentrations (4–10% of LC50), which is characteristic of U‐shaped dose‐response curves. Snail movement was not affected by ILs with octyl alkyl groups. Grazing patterns, however, indicated that snails grazed less at higher IL concentrations. Physa acuta egestion rates were reduced in the presence of ILs at 3 to 10% of LC50 concentrations. Thus, nonlethal IL concentrations affected P. acuta behaviors, potentially impacting individual fitness and food web interactions. These results provide initial information needed to assess the potential hazards of ILs should they reach freshwater ecosystems.

Journal

Environmental Toxicology and ChemistryOxford University Press

Published: Jul 1, 2005

Keywords: ; ; ; ;

There are no references for this article.