Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis.

The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis. Abstract The first committed step in the gibberellin (GA) biosynthetic pathway is the conversion of geranylgeranyl pyrophosphate (GGPP) through copalyl pyrophosphate (CPP) to ent-kaurene catalyzed by ent-kaurene synthetases A and B. The ga1 mutants of Arabidopsis are gibberellin-responsive male-sterile dwarfs. Biochemical studies indicate that biosynthesis of GAs in the ga1 mutants is blocked prior to the synthesis of ent-kaurene. The GA1 locus was cloned previously using the technique of genomic subtraction. Here, we report the isolation of a nearly full-length GA1 cDNA clone from wild-type Arabidopsis. This cDNA clone encodes an active protein and is able to complement the dwarf phenotype in ga1-3 mutants by Agrobacterium-mediated transformation. In Escherichia coli cells that express both the Arabidopsis GA1 gene and the Erwinia uredovora gene encoding GGPP synthase, CPP was accumulated. This result indicates that the GA1 gene encodes the enzyme ent-kaurene synthetase A, which catalyzes the conversion of GGPP to CPP. Subcellular localization of the GA1 protein was studied using 35S-labeled GA1 protein and isolated pea chloroplasts. The results showed that the GA1 protein is imported into and processed in pea chloroplasts in vitro. This content is only available as a PDF. © 1994 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Plant Cell Oxford University Press

The Arabidopsis GA1 locus encodes the cyclase ent-kaurene synthetase A of gibberellin biosynthesis.

The Plant Cell , Volume 6 (10) – Oct 1, 1994

Loading next page...
 
/lp/oxford-university-press/the-arabidopsis-ga1-locus-encodes-the-cyclase-ent-kaurene-synthetase-a-t1XprGQdYn

References (40)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
1040-4651
eISSN
1532-298X
DOI
10.1105/tpc.6.10.1509
Publisher site
See Article on Publisher Site

Abstract

Abstract The first committed step in the gibberellin (GA) biosynthetic pathway is the conversion of geranylgeranyl pyrophosphate (GGPP) through copalyl pyrophosphate (CPP) to ent-kaurene catalyzed by ent-kaurene synthetases A and B. The ga1 mutants of Arabidopsis are gibberellin-responsive male-sterile dwarfs. Biochemical studies indicate that biosynthesis of GAs in the ga1 mutants is blocked prior to the synthesis of ent-kaurene. The GA1 locus was cloned previously using the technique of genomic subtraction. Here, we report the isolation of a nearly full-length GA1 cDNA clone from wild-type Arabidopsis. This cDNA clone encodes an active protein and is able to complement the dwarf phenotype in ga1-3 mutants by Agrobacterium-mediated transformation. In Escherichia coli cells that express both the Arabidopsis GA1 gene and the Erwinia uredovora gene encoding GGPP synthase, CPP was accumulated. This result indicates that the GA1 gene encodes the enzyme ent-kaurene synthetase A, which catalyzes the conversion of GGPP to CPP. Subcellular localization of the GA1 protein was studied using 35S-labeled GA1 protein and isolated pea chloroplasts. The results showed that the GA1 protein is imported into and processed in pea chloroplasts in vitro. This content is only available as a PDF. © 1994 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

The Plant CellOxford University Press

Published: Oct 1, 1994

There are no references for this article.