Access the full text.
Sign up today, get DeepDyve free for 14 days.
Peter Gerl, W. Woess (1986)
Simple Random Walks on TreesEur. J. Comb., 7
W. Woess (1983)
Puissances de convolution sur les groupes libres ayant un nombre quelconque de générateursPubl. Inst. Elie Cartan, 7
A. Mantero, A. Zappa (1983)
The Poisson transform and representations of a free groupJournal of Functional Analysis, 51
E. Bender (1974)
Asymptotic Methods in EnumerationSiam Review, 16
P. Gerl (1979)
Ein Gleichverteilungssatz auf F2
G. Letac (1981)
Problemes classiques de probabilite sur un couple de Gelfand
M. Picardello (1983)
Spherical functions and local limit theorems on free groupsAnnali di Matematica Pura ed Applicata, 133
Y. Guivarc'h (1980)
Loi des grands nombres et rayon spectral d'une marche aléatoire sur un groupe de LieAstérisque, 74
P. Cartier (1972)
Harmonic analysis on treesProc. Symp. Pure Math., 26
C. Akemann, Phillip Ostrand (1976)
COMPUTING NORMS IN GROUP C*-ALGEBRAS.*American Journal of Mathematics, 98
P. Gerl (1971)
Über die Anzahl der Darstellungen von WortenMonatshefte für Mathematik, 75
P. Cartier (1972)
Fonctions harmoniques sur un arbreSymp. Math., 9
C. Berg, J. Christensen (1974)
Sur la norme des opérateurs de convolutionInventiones mathematicae, 23
K. Aomoto (1984)
Spectral theory on a free group and algebraic curvesJ. Fac. Sci. Univ. Tokyo, Sec. IA, 31
J.P. Arnaud (1980)
Fonctions sphériques et fonctions définies positives sur l'arbre homogèneC.R. Acad. Sci. Paris, 290
Ch. Stone (1966)
Ratio limit theorems for random walks on topological groupsTrans. Am. Math. Soc., 125
S. Sawyer (1978)
Isotropic random walks in a treeZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 42
H. Kesten (1959)
Symmetric random walks on groupsTransactions of the American Mathematical Society, 92
E.B. Dynkin, M.B. Malyutov (1961)
Random walks on groups with a finite number of generatorsSov. Math. Dokl., 2
P. Gerl (1978)
Wahrscheinlichkeitsmaße auf diskreten GruppenArchiv der Mathematik, 31
H. Furstenberg (1970)
Random walks and discrete subgroups of Lie groupsAdvs. Probab., 1
A. Figá-Talamanca, M. Picardello (1983)
Harmonic Analysis on Free Groups
D. Vere-Jones (1962)
GEOMETRIC ERGODICITY IN DENUMERABLE MARKOV CHAINSQuarterly Journal of Mathematics, 13
Y. Derriennic (1975)
Marche aléatoire sur le groupe libre et frontière de MartinZeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 32
C. Stone (1966)
Ratio limit theorems for random walks on groupsTransactions of the American Mathematical Society, 125
K. Aomoto (1984)
Spectral theory on a free group and algebraic curvesJournal of the Faculty of Science, the University of Tokyo. Sect. 1 A, Mathematics, 31
P. Gerl (1978)
Eine asymptotische Auswertung von Faltungspotenzen in gewissen GruppenSitzungsber. Österr. Akad. Wiss., Math.-Naturw. Klasse, Abt. 2, 186
SummaryNearest neighbour random walks on the homogeneous tree representing a free group withs generators (2≦s∞) are investigated. By use of generating functions and their analytic properties a local limit theorem is derived. A study of the harmonic functions corresponding to the random walk leads to properties that characterize ther-harmonic function connected with the local limits.
Probability Theory and Related Fields – Springer Journals
Published: Sep 1, 1986
Keywords: Free Group; Stochastic Process; Random Walk; Probability Theory; Harmonic Function
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.