Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. VanDersarl, A. Xu, N. Melosh (2012)
Nanostraws for direct fluidic intracellular access.Nano letters, 12 8
Maria Beŀtowska-Brzezinska, E. Dutkiewicz, Wojciech Ŀawicki (1979)
Gold cyanide ion electroreduction on gold electrodeJournal of Electroanalytical Chemistry, 99
Silviya Ojovan, Noha Rabieh, Nava Shmoel, H. Erez, Eilon Maydan, A. Cohen, M. Spira (2015)
A feasibility study of multi-site,intracellular recordings from mammalian neurons by extracellular gold mushroom-shaped microelectrodesScientific Reports, 5
M. Dipalo, G. Messina, Hayder Amin, R. Rocca, V. Shalabaeva, A. Simi, A. Maccione, P. Zilio, L. Berdondini, F. Angelis (2015)
3D plasmonic nanoantennas integrated with MEA biosensors.Nanoscale, 7 8
Raeyoung Kim, Y. Nam (2013)
Novel platinum black electroplating technique improving mechanical stability2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
Manuel Wesche, Martin Hüske, A. Yakushenko, D. Brüggemann, D. Mayer, A. Offenhäusser, B. Wolfrum (2012)
A nanoporous alumina microelectrode array for functional cell–chip couplingNanotechnology, 23
C. Xie, Z. Lin, Lindsey Hanson, Yi Cui, B. Cui (2012)
Intracellular Recording of Action Potentials by Nanopillar ElectroporationNature nanotechnology, 7
(2007)
Solid-State Sensors, Actuators and Microsystems Conf
Xi Xie, A. Xu, Matthew Angle, N. Tayebi, P. Verma, N. Melosh (2013)
Mechanical model of vertical nanowire cell penetration.Nano letters, 13 12
Raeyoung Kim, Sunghoon Joo, Hyunjun Jung, Nari Hong, Y. Nam (2014)
Recent trends in microelectrode array technology for in vitro neural interface platformBiomedical Engineering Letters, 4
G. Panaitov, S. Thiéry, B. Hofmann, A. Offenhäusser (2011)
Fabrication of gold micro-spine structures for improvement of cell/device adhesionMicroelectronic Engineering, 88
Nils Sanetra, V. Feig, B. Wolfrum, A. Offenhäusser, D. Mayer (2011)
Low impedance surface coatings via nanopillars and conductive polymersphysica status solidi (a), 208
M. Dipalo, G. Messina, Hayder Amin, F. Moia, R. Rocca, V. Shalabaeva, A. Maccione, L. Berdondini, F. Angelis (2015)
Multifunctional biosensing with three-dimensional plasmonic nanoantennas, 9518
Jacob Robinson, Marsela Jorgolli, A. Shalek, Myung‐Han Yoon, Rona Gertner, Hongkun Park (2012)
Vertical nanowire electrode arrays as a scalable platform for intracellular interfacing to neuronal circuits.Nature nanotechnology, 7 3
B. Hofmann, Enno Kätelhön, Manuel Schottdorf, A. Offenhäusser, B. Wolfrum (2011)
Nanocavity electrode array for recording from electrogenic cells.Lab on a chip, 11 6
M. Asplund, T. Nyberg, O. Inganäs (2010)
Electroactive polymers for neural interfacesPolymer Chemistry, 1
Matthew Angle, B. Cui, N. Melosh (2015)
Nanotechnology and neurophysiologyCurrent Opinion in Neurobiology, 32
Anna Czeschik, A. Offenhäusser, B. Wolfrum (2014)
Fabrication of MEA‐based nanocavity sensor arrays for extracellular recording of action potentialsphysica status solidi (a), 211
F. Santoro, S. Dasgupta, J. Schnitker, T. Auth, E. Neumann, G. Panaitov, G. Gompper, A. Offenhäusser (2014)
Interfacing electrogenic cells with 3D nanoelectrodes: position, shape, and size matter.ACS nano, 8 7
Anna Fendyur, M. Spira (2012)
Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodesFrontiers in Neuroengineering, 5
R. Sorkin, A. Greenbaum, Moshe David-Pur, S. Anava, A. Ayali, E. Ben-Jacob, Y. Hanein (2009)
Process entanglement as a neuronal anchorage mechanism to rough surfacesNanotechnology, 20
Lilach Bareket-Keren, Y. Hanein (2013)
Carbon nanotube-based multi electrode arrays for neuronal interfacing: progress and prospectsFrontiers in Neural Circuits, 6
X. Cui, David Martin (2003)
Electrochemical deposition and characterization of poly(3,4-ethylenedioxythiophene) on neural microelectrode arraysSensors and Actuators B-chemical, 89
Aviad Hai, A. Dormann, J. Shappir, S. Yitzchaik, C. Bartic, G. Borghs, J. Langedijk, M. Spira (2009)
Spine-shaped gold protrusions improve the adherence and electrical coupling of neurons with the surface of micro-electronic devicesJournal of The Royal Society Interface, 6
M. Heim, B. Yvert, A. Kuhn (2012)
Nanostructuration strategies to enhance microelectrode array (MEA) performance for neuronal recording and stimulationJournal of Physiology-Paris, 106
C. Thomas, P. Springer, G. Loeb, Y. Berwald‐Netter, L. Okun (1972)
A miniature microelectrode array to monitor the bioelectric activity of cultured cells.Experimental cell research, 74 1
E. Seker, Y. Berdichevsky, M. Begley, M. Reed, K. Staley, M. Yarmush (2010)
The fabrication of low-impedance nanoporous gold multiple-electrode arrays for neural electrophysiology studiesNanotechnology, 21
F. Angelis, M. Malerba, M. Patrini, E. Miele, G. Das, A. Toma, R. Zaccaria, E. Fabrizio (2013)
3D hollow nanostructures as building blocks for multifunctional plasmonics.Nano letters, 13 8
Nava Shmoel, Noha Rabieh, Silviya Ojovan, H. Erez, Eilon Maydan, M. Spira (2016)
Multisite electrophysiological recordings by self-assembled loose-patch-like junctions between cultured hippocampal neurons and mushroom-shaped microelectrodesScientific Reports, 6
Z. Jahed, Peter Lin, Brandon Seo, M. Verma, F. Gu, T. Tsui, M. Mofrad (2014)
Responses of Staphylococcus aureus bacterial cells to nanocrystalline nickel nanostructures.Biomaterials, 35 14
Mark Shein, A. Greenbaum, T. Gabay, R. Sorkin, Moshe David-Pur, E. Ben-Jacob, Y. Hanein (2009)
Engineered neuronal circuits shaped and interfaced with carbon nanotube microelectrode arraysBiomedical Microdevices, 11
Moshe David-Pur, Lilach Bareket-Keren, Giora Beit-Yaakov, D. Raz-Prag, Y. Hanein (2013)
All-carbon-nanotube flexible multi-electrode array for neuronal recording and stimulationBiomedical Microdevices, 16
M. Spira, Aviad Hai (2013)
Multi-electrode array technologies for neuroscience and cardiology.Nature nanotechnology, 8 2
Christopher Chapman, Hao Chen, M. Stamou, J. Biener, M. Biener, P. Lein, E. Seker (2015)
Nanoporous gold as a neural interface coating: effects of topography, surface chemistry, and feature size.ACS applied materials & interfaces, 7 13
Aviad Hai, J. Shappir, M. Spira (2010)
In-cell recordings by extracellular microelectrodesNature Methods, 7
Anna Fendyur, N. Mazurski, J. Shappir, M. Spira (2011)
Formation of Essential Ultrastructural Interface between Cultured Hippocampal Cells and Gold Mushroom-Shaped MEA- Toward “IN-CELL” Recordings from Vertebrate NeuronsFrontiers in Neuroengineering, 4
H. Cheh, R. Sard (1971)
Electrochemical and Structural Aspects of Gold Electrodeposition from Dilute Solutions by Direct CurrentJournal of The Electrochemical Society, 118
M. Heim, L. Rousseau, S. Reculusa, V. Urbanová, C. Mazzocco, S. Joucla, L. Bouffier, K. Vytras, P. Bartlett, A. Kuhn, B. Yvert (2012)
Combined macro-/mesoporous microelectrode arrays for low-noise extracellular recording of neural networks.Journal of neurophysiology, 108 6
M. Spira, D. Kamber, A. Dormann, A. Cohen, C. Bartic, G. Borghs, J. Langedijk, S. Yitzchaik, K. Shabthai, J. Shappir (2007)
Improved Neuronal Adhesion to the Surface of Electronic Device by Engulfment of Protruding Micro-Nails Fabricated on the Chip SurfaceTRANSDUCERS 2007 - 2007 International Solid-State Sensors, Actuators and Microsystems Conference
Anna Czeschik, P. Rinklin, U. Derra, Sabrina Ullmann, Peter Holik, S. Steltenkamp, A. Offenhäusser, B. Wolfrum (2015)
Nanostructured cavity devices for extracellular stimulation of HL-1 cells.Nanoscale, 7 20
M. Abidian, J. Corey, D. Kipke, David Martin (2010)
Conducting-polymer nanotubes improve electrical properties, mechanical adhesion, neural attachment, and neurite outgrowth of neural electrodes.Small, 6 3
F. Santoro, J. Schnitker, G. Panaitov, A. Offenhäusser (2013)
On chip guidance and recording of cardiomyocytes with 3D mushroom-shaped electrodes.Nano letters, 13 11
D. Brüggemann, B. Wolfrum, V. Maybeck, Yulia Mourzina, Michael Jansen, A. Offenhäusser (2011)
Nanostructured gold microelectrodes for extracellular recording from electrogenic cellsNanotechnology, 22
Microelectrode arrays (MEAs) are gaining increasing importance for the investigation of signaling processes between electrogenic cells. However, efficient cell–chip coupling for robust and long-term electrophysiological recording and stimulation still remains a challenge. A possible approach for the improvement of the cell–electrode contact is the utilization of three-dimensional structures. In recent years, various 3D electrode geometries have been developed, but we are still lacking a fabrication approach that enables the formation of different 3D structures on a single chip in a controlled manner. This, however, is needed to enable a direct and reliable comparison of the recording capabilities of the different structures. Here, we present a method for a precisely controlled deposition of nanoelectrodes, enabling the fabrication of multiple, well-defined types of structures on our 64 electrode MEAs towards a rapid-prototyping approach to 3D electrodes.
Nanotechnology – IOP Publishing
Published: Mar 3, 2017
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.