Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Random walks and periodic continued fractions

Random walks and periodic continued fractions <jats:p>Nearest-neighbour random walks on the non-negative integers with transition probabilities <jats:italic>p</jats:italic><jats:sub>0,1</jats:sub> = 1, <jats:italic>p<jats:sub>k,k</jats:sub></jats:italic><jats:sub>–1</jats:sub> = <jats:italic>g<jats:sub>k</jats:sub></jats:italic>, <jats:italic>p<jats:sub>k,k</jats:sub></jats:italic><jats:sub>+1</jats:sub> = 1– <jats:italic>g<jats:sub>k</jats:sub></jats:italic> (0 &lt; <jats:italic>g<jats:sub>k</jats:sub></jats:italic> &lt; 1, <jats:italic>k</jats:italic> = 1, 2, …) are studied by use of generating functions and continued fraction expansions. In particular, when (<jats:italic>g<jats:sub>k</jats:sub></jats:italic>) is a periodic sequence, local limit theorems are proved and the harmonic functions are determined. These results are applied to simple random walks on certain trees.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Advances in Applied Probability CrossRef

Random walks and periodic continued fractions

Advances in Applied Probability , Volume 17 (1): 67-84 – Mar 1, 1985

Random walks and periodic continued fractions


Abstract

<jats:p>Nearest-neighbour random walks on the non-negative integers with transition probabilities <jats:italic>p</jats:italic><jats:sub>0,1</jats:sub> = 1, <jats:italic>p<jats:sub>k,k</jats:sub></jats:italic><jats:sub>–1</jats:sub> = <jats:italic>g<jats:sub>k</jats:sub></jats:italic>, <jats:italic>p<jats:sub>k,k</jats:sub></jats:italic><jats:sub>+1</jats:sub> = 1– <jats:italic>g<jats:sub>k</jats:sub></jats:italic> (0 &lt; <jats:italic>g<jats:sub>k</jats:sub></jats:italic> &lt; 1, <jats:italic>k</jats:italic> = 1, 2, …) are studied by use of generating functions and continued fraction expansions. In particular, when (<jats:italic>g<jats:sub>k</jats:sub></jats:italic>) is a periodic sequence, local limit theorems are proved and the harmonic functions are determined. These results are applied to simple random walks on certain trees.</jats:p>

Loading next page...
 
/lp/crossref/random-walks-and-periodic-continued-fractions-s0Qg7xEEXh

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0001-8678
DOI
10.2307/1427053
Publisher site
See Article on Publisher Site

Abstract

<jats:p>Nearest-neighbour random walks on the non-negative integers with transition probabilities <jats:italic>p</jats:italic><jats:sub>0,1</jats:sub> = 1, <jats:italic>p<jats:sub>k,k</jats:sub></jats:italic><jats:sub>–1</jats:sub> = <jats:italic>g<jats:sub>k</jats:sub></jats:italic>, <jats:italic>p<jats:sub>k,k</jats:sub></jats:italic><jats:sub>+1</jats:sub> = 1– <jats:italic>g<jats:sub>k</jats:sub></jats:italic> (0 &lt; <jats:italic>g<jats:sub>k</jats:sub></jats:italic> &lt; 1, <jats:italic>k</jats:italic> = 1, 2, …) are studied by use of generating functions and continued fraction expansions. In particular, when (<jats:italic>g<jats:sub>k</jats:sub></jats:italic>) is a periodic sequence, local limit theorems are proved and the harmonic functions are determined. These results are applied to simple random walks on certain trees.</jats:p>

Journal

Advances in Applied ProbabilityCrossRef

Published: Mar 1, 1985

There are no references for this article.