Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes.

Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes. The autosomal dominant neurological syndrome of Huntington's disease has been modeled in transgenic mice by the expression of a portion of the human huntingtin gene together with 140 CAG repeats (the R6/2 strain). The mice develop progressive chorea with onset at approximately 9 weeks of age and with death at approximately 13 weeks. Associated symptoms include weight loss and polyuria in the absence of eating or drinking deficits. We have found that these mice have insulin-responsive diabetes. Fasting glucose was 211 + 19 mg/dl in R6/2 mice compared with 93 + 5 mg/dl in C57/B6 controls (n = 12, both groups; P < 0.01). Administration of insulin intraperitoneally led to a reduction in blood glucose. At 12.5 weeks, animals were killed and pancreas weighed and analyzed for insulin and glucagon. Pancreatic mass in R6/2 mice was the same as controls, and islets appeared normal in morphology without lymphocytic infiltration. Immunohistochemical staining showed dramatic reductions in glucagon in the alpha-cells and in insulin in the beta-cells. Direct tissue assays showed glucagon and insulin content were reduced to only 10 and 15% of controls, respectively. Diabetes has been reported as being more common in Huntington's disease and other triplet repeat disorders. The R6/2 mouse should prove useful for elucidating the mechanism of diabetes in these genetic diseases. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Diabetes Pubmed

Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes.

Diabetes , Volume 48 (3): 3 – Mar 30, 1999

Mice transgenic for an expanded CAG repeat in the Huntington's disease gene develop diabetes.


Abstract

The autosomal dominant neurological syndrome of Huntington's disease has been modeled in transgenic mice by the expression of a portion of the human huntingtin gene together with 140 CAG repeats (the R6/2 strain). The mice develop progressive chorea with onset at approximately 9 weeks of age and with death at approximately 13 weeks. Associated symptoms include weight loss and polyuria in the absence of eating or drinking deficits. We have found that these mice have insulin-responsive diabetes. Fasting glucose was 211 + 19 mg/dl in R6/2 mice compared with 93 + 5 mg/dl in C57/B6 controls (n = 12, both groups; P < 0.01). Administration of insulin intraperitoneally led to a reduction in blood glucose. At 12.5 weeks, animals were killed and pancreas weighed and analyzed for insulin and glucagon. Pancreatic mass in R6/2 mice was the same as controls, and islets appeared normal in morphology without lymphocytic infiltration. Immunohistochemical staining showed dramatic reductions in glucagon in the alpha-cells and in insulin in the beta-cells. Direct tissue assays showed glucagon and insulin content were reduced to only 10 and 15% of controls, respectively. Diabetes has been reported as being more common in Huntington's disease and other triplet repeat disorders. The R6/2 mouse should prove useful for elucidating the mechanism of diabetes in these genetic diseases.

Loading next page...
 
/lp/pubmed/mice-transgenic-for-an-expanded-cag-repeat-in-the-huntington-s-disease-rjJEyqvnDh

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0012-1797
DOI
10.2337/diabetes.48.3.649
pmid
10078572

Abstract

The autosomal dominant neurological syndrome of Huntington's disease has been modeled in transgenic mice by the expression of a portion of the human huntingtin gene together with 140 CAG repeats (the R6/2 strain). The mice develop progressive chorea with onset at approximately 9 weeks of age and with death at approximately 13 weeks. Associated symptoms include weight loss and polyuria in the absence of eating or drinking deficits. We have found that these mice have insulin-responsive diabetes. Fasting glucose was 211 + 19 mg/dl in R6/2 mice compared with 93 + 5 mg/dl in C57/B6 controls (n = 12, both groups; P < 0.01). Administration of insulin intraperitoneally led to a reduction in blood glucose. At 12.5 weeks, animals were killed and pancreas weighed and analyzed for insulin and glucagon. Pancreatic mass in R6/2 mice was the same as controls, and islets appeared normal in morphology without lymphocytic infiltration. Immunohistochemical staining showed dramatic reductions in glucagon in the alpha-cells and in insulin in the beta-cells. Direct tissue assays showed glucagon and insulin content were reduced to only 10 and 15% of controls, respectively. Diabetes has been reported as being more common in Huntington's disease and other triplet repeat disorders. The R6/2 mouse should prove useful for elucidating the mechanism of diabetes in these genetic diseases.

Journal

DiabetesPubmed

Published: Mar 30, 1999

There are no references for this article.