Access the full text.
Sign up today, get DeepDyve free for 14 days.
X. Lou, Da Deng, J. Lee, Ji Feng, L. Archer (2008)
Self‐Supported Formation of Needlelike Co3O4 Nanotubes and Their Application as Lithium‐Ion Battery ElectrodesAdvanced Materials, 20
B. Varghese, Teo Hoong, Zhu Yanwu, Mogalahalli Reddy, B. Chowdari, Andrew Wee, Tan Vincent, Chwee Lim, C. Sow (2007)
Co3O4 Nanostructures with Different Morphologies and their Field‐Emission PropertiesAdvanced Functional Materials, 17
G. Binotto, D. Larcher, A. Prakash, R. Urbina, M. Hegde, J. Tarascon (2007)
Synthesis, Characterization, and Li-Electrochemical Performance of Highly Porous Co3O4 PowdersChemistry of Materials, 19
F. Kurtuluş, H. Guler (2005)
A Simple Microwave-Assisted Route to Prepare Black Cobalt, Co3O4Inorganic Materials, 41
Yong‐Mook Kang, Ki-tae Kim, Jin-ho Kim, Hyunseok Kim, P. Lee, Jai-Young Lee, H. Liu, S. Dou (2004)
Electrochemical properties of Co3O4, Ni–Co3O4 mixture and Ni–Co3O4 composite as anode materials for Li ion secondary batteriesJournal of Power Sources, 133
K. Nam, Dong‐Wan Kim, P. Yoo, Chung-yi Chiang, N. Meethong, P. Hammond, Y. Chiang, A. Belcher (2006)
Virus-Enabled Synthesis and Assembly of Nanowires for Lithium Ion Battery ElectrodesScience, 312
Ji Feng, H. Zeng (2003)
Size-Controlled Growth of Co3O4 NanocubesChemistry of Materials, 15
P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J. Tarascon (2000)
Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteriesNature, 407
L. Cao, M. Lu, Hu-lin Li (2005)
Preparation of Mesoporous Nanocrystalline Co3O4 and Its Applicability of Porosity to the Formation of Electrochemical CapacitanceJournal of The Electrochemical Society, 152
B. Tian, Xiaoying Liu, L. Solovyov, Zheng Liu, Haifeng Yang, Zhendong Zhang, S. Xie, Fuqiang Zhang, B. Tu, Chengzhong Yu, O. Terasaki, Dongyuan Zhao (2004)
Facile synthesis and characterization of novel mesoporous and mesorelief oxides with gyroidal structures.Journal of the American Chemical Society, 126 3
Jing Li, Songbai Tang, Li Lu, H. Zeng (2007)
Preparation of nanocomposites of metals, metal oxides, and carbon nanotubes via self-assembly.Journal of the American Chemical Society, 129 30
T. He, Dairong Chen, X. Jiao, Yingling Wang, Yongzheng Duan (2005)
Solubility-Controlled Synthesis of High-Quality Co3O4 NanocrystalsChemistry of Materials, 17
L. Cao, Yingke Zhou, M. Lu, Hu-lin Li (2003)
Preparation of nanocrystalline Co3O4 and its properties as supercapacitorsChinese Science Bulletin, 48
K. Klepper, O. Nilsen, H. Fjellvåg (2007)
Epitaxial growth of cobalt oxide by atomic layer depositionJournal of Crystal Growth, 307
M. Benitez, O. Petracic, E. Salabaş, F. Radu, H. Tüysüz, F. Schüth, H. Zabel (2008)
Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires.Physical review letters, 101 9
Benxia Li, Yi Xie, Changzheng Wu, Zhengquan Li, Jin Zhang (2006)
Selective synthesis of cobalt hydroxide carbonate 3D architectures and their thermal conversion to cobalt spinel 3D superstructuresMaterials Chemistry and Physics, 99
R. Drasovean, R. Monteiro, E. Fortunato, V. Muşat (2006)
Optical properties of cobalt oxide films by a dipping sol–gel processJournal of Non-crystalline Solids, 352
Lin He, Chinping Chen, Ning Wang, Wei Zhou, Lin Guo (2007)
Finite size effect on Néel temperature with Co3O4 nanoparticlesJournal of Applied Physics, 102
Yan Liu, C. Mi, Linghao Su, Xiaogang Zhang (2008)
Hydrothermal synthesis of Co3O4 microspheres as anode material for lithium-ion batteriesElectrochimica Acta, 53
T. Lai, Yuan-Lung Lai, Chia-Chan Lee, Y. Shu, Chen-Bin Wang (2008)
Microwave-assisted rapid fabrication of Co3O4 nanorods and application to the degradation of phenolCatalysis Today, 131
Yanguang Li, B. Tan, Yiying Wu (2008)
Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability.Nano letters, 8 1
Yun-Shuang Ding, Linping Xu, Chun‐Hu Chen, Xiongfei Shen, S. Suib (2008)
Syntheses of Nanostructures of Cobalt Hydrotalcite Like Compounds and Co3O4 via a Microwave-Assisted Reflux MethodJournal of Physical Chemistry C, 112
Linhai Zhuo, Jiechao Ge, Lihua Cao, B. Tang (2009)
Solvothermal Synthesis of CoO, Co 3 O 4 , Ni(OH) 2 and Mg(OH) 2 NanotubesCrystal Growth & Design
Hai-jing Liu, Shou‐Hang Bo, Wang-jun Cui, Feng Li, Congxiao Wang, Yongyao Xia (2008)
Nano-sized cobalt oxide/mesoporous carbon sphere composites as negative electrode material for lithium-ion batteriesElectrochimica Acta, 53
Z. Liang, Ying-Jie Zhu, G. Cheng, Yue-Hong Huang (2006)
Microwave-assisted synthesis of β-Co(OH)2 and Co3O4 nanosheets via a layered precursor conversion methodCanadian Journal of Chemistry, 84
N. Du, Houyu Zhang, B. D. Chen, J. B. Wu, X. Y. Ma, Z. H. Liu, Y. Q. Zhang, D. R. Yang, X. H. Huang, J. Tu (2007)
Porous Co3O4 Nanotubes Derived From Co4(CO)12 Clusters on Carbon Nanotube Templates: A Highly Efficient Material For Li‐Battery ApplicationsAdvanced Materials, 19
F. Cheng, Zhanliang Tao, Jing Liang, Jun Chen (2008)
Template-Directed Materials for Rechargeable Lithium-Ion Batteries†Chemistry of Materials, 20
Tao Li, Shaoguang Yang, Lisheng Huang, B. Gu, Youwei Du (2004)
A novel process from cobalt nanowire to Co3O4 nanotubeNanotechnology, 15
Linhua Hu, Q. Peng, Yadong Li (2008)
Selective synthesis of Co3O4 nanocrystal with different shape and crystal plane effect on catalytic property for methane combustion.Journal of the American Chemical Society, 130 48
A. Cao, Jinsong Hu, Han-Pu Liang, Weiguo Song, L. Wan, Xiulin He, Xiaolei Gao, Shannon Xia (2006)
Hierarchically structured cobalt oxide (Co3O4): the morphology control and its potential in sensors.The journal of physical chemistry. B, 110 32
Y. Ichiyanagi, Saori Yamada (2005)
The size-dependent magnetic properties of Co3O4 nanoparticlesPolyhedron, 24
T. He, D. Chen, X. Jiao, Y. Wang (2006)
Co3O4 Nanoboxes: Surfactant‐Templated Fabrication and Microstructure CharacterizationAdvanced Materials, 18
Rongming Wang, Chenmin Liu, Hongzhou Zhang, C. Chen, Lin Guo, Huibin Xu, Shihe Yang (2004)
Porous nanotubes of Co3O4: Synthesis, characterization, and magnetic propertiesApplied Physics Letters, 85
L. Tian, Xianfeng Yang, P. Lu, Ian Williams, Caihong Wang, Shunying Ou, Chao-lun Liang, Mingmei Wu (2008)
Hollow single-crystal spinel nanocubes: the case of zinc cobalt oxide grown by a unique Kirkendall effect.Inorganic chemistry, 47 13
Hanshui Liu, S. Yen (2007)
Characterization of electrolytic Co3O4 thin films as anodes for lithium-ion batteriesJournal of Power Sources, 166
M. Gaberšček, M. Bele, J. Drofenik, R. Dominko, S. Pejovnik (2001)
Improved carbon anode properties: pretreatment of particles in polyelectrolyte solutionJournal of Power Sources, 97
X. Lou, Da Deng, J. Lee, L. Archer (2008)
Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage propertiesJournal of Materials Chemistry, 18
Shan Ding, Ping Lu, Jian‐Guo Zheng, Xianfeng Yang, F. Zhao, Jian Chen, Hao Wu, Mingmei Wu (2007)
Textured Tubular Nanoparticle Structures: Precursor‐Templated Synthesis of GaN Sub‐micrometer Sized TubesAdvanced Functional Materials, 17
M. Ando, K. Kadono, K. Kamada, K. Ohta (2004)
Third-order nonlinear optical responses of nanoparticulate Co3O4 filmsThin Solid Films, 446
Umesh Kumar, Ashvini Shete, A. Harle, O. Kasyutich, W. Schwarzacher, A. Pundle, P. Poddar (2008)
Extracellular bacterial synthesis of protein-functionalized ferromagnetic Co3O4 nanocrystals and imaging of self-organization of bacterial cells under stress after exposure to metal ionsChemistry of Materials, 20
B. Varghese, Yousheng Zhang, L. Dai, V. Tan, C. Lim, C. Sow (2008)
Structure-mechanical property of individual cobalt oxide nanowires.Nano letters, 8 10
Hui Zhang, Jianbo Wu, Chuanxin Zhai, Xiangyang Ma, N. Du, J. Tu, Deren Yang (2008)
From cobalt nitrate carbonate hydroxide hydrate nanowires to porous Co3O4 nanorods for high performance lithium-ion battery electrodesNanotechnology, 19
T. He, Dairong Chen, X. Jiao (2004)
Controlled Synthesis of Co 3 O 4 Nanoparticles through Oriented AggregationChemistry of Materials
Yulong Wu, E. Rahm, R. Holze (2003)
Carbon anode materials for lithium ion batteriesJournal of Power Sources, 114
P. Poizot, S. Laruelle, S. Grugeon, J. Tarascon (2002)
Rationalization of the Low-Potential Reactivity of 3d-Metal-Based Inorganic Compounds toward LiJournal of The Electrochemical Society, 149
Weiyang Li, Lingqun Xu, Jun Chen (2005)
Co3O4 Nanomaterials in Lithium‐Ion Batteries and Gas SensorsAdvanced Functional Materials, 15
T. He, Dairong Chen, X. Jiao, Yanyan Xu, Yuanxiang Gu (2004)
Surfactant-assisted solvothermal synthesis of Co3O4 hollow spheres with oriented-aggregation nanostructures and tunable particle size.Langmuir : the ACS journal of surfaces and colloids, 20 19
Zhiguang Guo, Weimin Liu (2007)
Superhydrophobic spiral Co3O4 nanorod arraysApplied Physics Letters, 90
Zhaoping Liu, R. Ma, M. Osada, K. Takada, T. Sasaki (2005)
Selective and Controlled Synthesis of α- and β-Cobalt Hydroxides in Highly Developed Hexagonal PlateletsJournal of the American Chemical Society, 127
(2004)
PAPER www.rsc.org/materials | Journal of Materials Chemistry Fabrication
Do Kim, S. Ju, H. Koo, S. Hong, Y. Kang (2006)
Synthesis of nanosized Co3O4 particles by spray pyrolysisJournal of Alloys and Compounds, 417
B. Vodungbo, F. Vidal, Y. Zheng, M. Marangolo, D. Demaille, H. EtgensV, J. Varalda, A. DeOliveiraAJ, F. Maccherozzi, G. Panaccione (2008)
希釈磁性酸化物の構造的磁気的分光法的な研究:CoドーピングされたCeO2-δJournal of Physics: Condensed Matter, 20
D. Larcher, D. Bonnin, R. Cortès, I. Rivals, L. Personnaz, J. Tarascon (2003)
Combined XRD, EXAFS, and Mössbauer Studies of the Reduction by Lithium of α Fe2 O 3 with Various Particle SizesJournal of The Electrochemical Society, 150
The growth of mesoporous quasi‐single‐crystalline Co3O4 nanobelts by topotactic chemical transformation from α‐Co(OH)2 nanobelts is realized. During the topotactic transformation process, the primary α‐Co(OH)2 nanobelt frameworks can be preserved. The phases, crystal structures, morphologies, and growth behavior of both the precursory and resultant products are characterized by powder X‐ray diffraction (XRD), electron microscopy—scanning electron (SEM) and transmission electron (TEM) microscopy, and selected area electron diffraction (SAED). Detailed investigation of the formation mechanism of the porous Co3O4 nanobelts indicates topotactic nucleation and oriented growth of textured spinel Co3O4 nanowalls (nanoparticles) inside the nanobelts. Co3O4 nanocrystals prefer (0001) epitaxial growth direction of hexagonal α‐Co(OH)2 nanobelts due to the structural matching of (0001) α‐Co(OH)2//(111) Co3O4. The surface‐areas and pore sizes of the spinel Co3O4 products can be tuned through heat treatment of α‐Co(OH)2 precursors at different temperatures. The galvanostatic cycling measurement of the Co3O4 products indicates that their charge–discharge performance can be optimized. In the voltage range of 0.0–3.0 V versus Li+/Li at 40 mA g−1, reversible capacities of a sample consisting of mesoporous quasi‐single‐crystalline Co3O4 nanobelts can reach up to 1400 mA h g−1, much larger than the theoretical capacity of bulk Co3O4 (892 mA h g−1).
Advanced Functional Materials – Wiley
Published: Feb 22, 2010
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.