Access the full text.
Sign up today, get DeepDyve free for 14 days.
Ravi Singh, Davide Pantarotto, D. McCarthy, O. Chaloin, J. Hoebeke, C. Partidos, J. Briand, M. Prato, A. Bianco, Kostas Kostarelos (2005)
Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: toward the construction of nanotube-based gene delivery vectors.Journal of the American Chemical Society, 127 12
Ningning Zhu, Zhu Chang, P. He, Yu-zhi Fang (2005)
Electrochemical DNA biosensors based on platinum nanoparticles combined carbon nanotubesAnalytica Chimica Acta, 545
Sathyajith Ravindran, S. Chaudhary, Brooke Colburn, M. Ozkan, C. Ozkan (2003)
Covalent Coupling of Quantum Dots to Multiwalled Carbon Nanotubes for Electronic Device ApplicationsNano Letters, 3
M. Zheng, A. Jagota, E. Semke, B. Diner, R. Mclean, S. Lustig, R. Richardson, N. Tassi (2003)
DNA-assisted dispersion and separation of carbon nanotubesNature Materials, 2
H. Postma, T. Teepen, Z. Yao, M. Grifoni, C. Dekker (2001)
Carbon Nanotube Single-Electron Transistors at Room TemperatureScience, 293
A. Jorio, A. Filho, G. Dresselhaus, M. Dresselhaus, A. Swan, M. Unlu, B. Goldberg, M. Pimenta, J. Hafner, Charles Lieber, R. Saito (2002)
G-band resonant Raman study of 62 isolated single-wall carbon nanotubesPhysical Review B, 65
Weiwei Chen, C. Tzang, Jianxin Tang, Mengsu Yang, Shuitong Lee (2005)
Covalently linked deoxyribonucleic acid with multiwall carbon nanotubes: Synthesis and characterizationApplied Physics Letters, 86
N. Seeman (2003)
DNA in a material worldNature, 421
Krishna Singh, R. Pandey, Xu Wang, R. Lake, C. Ozkan, Kang Wang, M. Ozkan (2006)
Covalent functionalization of single walled carbon nanotubes with peptide nucleic acid: Nanocomponents for molecular level electronicsCarbon, 44
G. Dovbeshko, O. Repnytska, E. Obraztsova, Y. Shtogun (2003)
DNA interaction with single-walled carbon nanotubes: a SEIRA studyChemical Physics Letters, 372
N. Bruque, R. Pandey, R. Lake, H. Wang, James Lewis (2005)
Electronic transport through a CNT-Pseudopeptide-CNT hybrid materialMolecular Simulation, 31
S. Tans, A. Verschueren, C. Dekker (1998)
Room-temperature transistor based on a single carbon nanotubeNature, 393
Christof Niemeyer (2000)
Self-assembled nanostructures based on DNA: towards the development of nanobiotechnology.Current opinion in chemical biology, 4 6
P. He, L. Dai (2004)
Aligned carbon nanotube-DNA electrochemical sensors.Chemical communications, 3
Bradford Taft, A. Lazareck, G. Withey, A. Yin, Jimmy Xu, S. Kelley (2004)
Site-specific assembly of DNA and appended cargo on arrayed carbon nanotubes.Journal of the American Chemical Society, 126 40
A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker (2001)
Logic Circuits with Carbon Nanotube TransistorsScience, 294
D. Porath, A. Bezryadin, S. Vries, C. Dekker (2000)
Direct measurement of electrical transport through DNA moleculesNature, 403
A. Javey, Qian Wang, A. Ural, Yiming Li, H. Dai (2002)
Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring OscillatorsNano Letters, 2
Xu Wang, R. Pandey, Krishna Singh, G. Andavan, Chunglin Tsai, R. Lake, M. Ozkan, C. Ozkan (2006)
Synthesis and characterization of peptide nucleic acid–platinum nanoclustersNanotechnology, 17
Yan-hui Li, Jun Ding, Z. Luan, Ze-chao Di, Yuefeng Zhu, Cai-lu Xu, De-hai Wu, B. Wei (2003)
Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubesCarbon, 41
I. Walmsley, H. Rabitz (2003)
Quantum Physics Under ControlPhysics Today, 56
R. Felice, A. Calzolari, Houyu Zhang (2004)
Towards metalated DNA-based structuresNanotechnology, 15
E. Braun, Y. Eichen, U. Sivan, G. Ben-Yoseph (1998)
DNA-templated assembly and electrode attachment of a conducting silver wireNature, 391
A. Bezryadin, C. Dekker, G. Schmid (1997)
Electrostatic trapping of single conducting nanoparticles between nanoelectrodesApplied Physics Letters, 71
J. Duguid, V. Bloomfield, J. Benevides, G. Thomas (1993)
Raman spectroscopy of DNA-metal complexes. I. Interactions and conformational effects of the divalent cations: Mg, Ca, Sr, Ba, Mn, Co, Ni, Cu, Pd, and Cd.Biophysical journal, 65 5
R. Pandey, N. Bruque, K. Alam, R. Lake (2006)
Carbon nanotube – molecular resonant tunneling diodephysica status solidi (a), 203
Chris Dwyer, Martin Guthold, M. Falvo, Sean Washburn, R. Superfine, D. Erie (2002)
DNA-functionalized single-walled carbon nanotubesNanotechnology, 13
Jianxiu Wang, Meixian Li, Zujin Shi, Nanqiang Li, Z. Gu (2004)
Electrochemistry of DNA at Single‐Wall Carbon NanotubesElectroanalysis, 16
M. Hazani, F. Hennrich, M. Kappes, R. Naaman, D. Peled, V. Sidorov, D. Shvarts (2004)
DNA-mediated self-assembly of carbon nanotube-based electronic devicesChemical Physics Letters, 391
G. Maubach, W. Fritzsche (2004)
Precise positioning of individual DNA structures in electrode gaps by self-organization onto guiding microstructuresNano Letters, 4
K. Keren, M. Krueger, R. Gilad, G. Ben-Yoseph, U. Sivan, E. Braun (2002)
Sequence-Specific Molecular Lithography on Single DNA MoleculesScience, 297
Sinan Li, P. He, Jian-Guo Dong, Zhixin Guo, L. Dai (2005)
DNA-directed self-assembling of carbon nanotubes.Journal of the American Chemical Society, 127 1
C. Joachim, M. Ratner (2005)
Molecular electronics: some views on transport junctions and beyond.Proceedings of the National Academy of Sciences of the United States of America, 102 25
J. Richter, M. Mertig, W. Pompe, I. Mönch, H. Schackert (2001)
Construction of highly conductive nanowires on a DNA templateApplied Physics Letters, 78
Biological molecules such as deoxyribonucleic acid (DNA) possess inherent recognition and self‐assembly capabilities, and are attractive templates for constructing functional hierarchical material structures as building blocks for nanoelectronics. Here we report the assembly and electronic functionality of nanoarchitectures based on conjugates of single‐walled carbon nanotubes (SWNTs) functionalized with carboxylic groups and single‐stranded DNA (ssDNA) sequences possessing terminal amino groups on both ends, hybridized together through amide linkages by adopting a straightforward synthetic route. Morphological and chemical‐functional characterization of the nanoarchitectures are investigated using scanning electron microscopy, transmission electron microscopy, atomic force microscopy, energy‐dispersive X‐ray spectroscopy, Raman spectroscopy, and Fourier‐transform infrared spectroscopy. Electrical measurements (I–V characterization) of the nanoarchitectures demonstrate negative differential resistance in the presence of SWNT/ssDNA interfaces, which indicates a biomimetic route to fabricating resonant tunneling diodes. I–V characterization on platinum‐metallized SWNT–ssDNA nanoarchitectures via salt reduction indicates modulation of their electrical properties, with effects ranging from those of a resonant tunneling diode to a resistor, depending on the amount of metallization. Electron transport through the nanoarchitectures has been analyzed by density functional theory calculations. Our studies illustrate the great promise of biomimetic assembly of functional nanosystems based on biotemplated materials and present new avenues toward exciting future opportunities in nanoelectronics and nanobiotechnology.
Small – Wiley
Published: Jan 1, 2006
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.