Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Mazzoccoli, D. Feke, H. Baskaran, P. Pintauro (2009)
Mechanical and cell viability properties of crosslinked low- and high-molecular weight poly(ethylene glycol) diacrylate blends.Journal of biomedical materials research. Part A, 93 2
Youssef Habibi, L. Lucia, O. Rojas (2010)
Cellulose nanocrystals: chemistry, self-assembly, and applications.Chemical reviews, 110 6
O. Faruk, A. Błędzki, H. Fink, M. Sain (2012)
Biocomposites reinforced with natural fibers: 2000–2010Progress in Polymer Science, 37
W. Wohlers (2017)
Berufstypische, neutrale Handlungen eines Rechtsanwalts als strafbare BeihilfeJuristische Rundschau, 2017
G. Siqueira, Dimitri Kokkinis, R. Libanori, Michael Hausmann, A. Gladman, A. Neels, P. Tingaut, T. Zimmermann, J. Lewis, A. Studart (2017)
Cellulose Nanocrystal Inks for 3D Printing of Textured Cellular ArchitecturesAdvanced Functional Materials, 27
V. Li, Arie Mulyadi, Conner Dunn, Yulin Deng, H. Qi (2018)
Direct Ink Write 3D Printed Cellulose Nanofiber Aerogel Structures with Highly Deformable, Shape Recoverable, and Functionalizable PropertiesACS Sustainable Chemistry & Engineering
Madhusudan Singh, H. Haverinen, P. Dhagat, G. Jabbour (2010)
Inkjet Printing—Process and Its ApplicationsAdvanced Materials, 22
Stephanie Beck-Candanedo, M. Roman, D. Gray (2005)
Effect of reaction conditions on the properties and behavior of wood cellulose nanocrystal suspensions.Biomacromolecules, 6 2
(2016)
2016) The evolution
(2016)
2016) 3d printing of conductive
A. Mabrouk, A. Ferraria, A. Rego, S. Boufi (2013)
Erratum to: Highly transparent nanocomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystalsCellulose, 20
D. Patel, A. Sakhaei, M. Layani, Biao Zhang, Qi Ge, S. Magdassi (2017)
Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D PrintingAdvanced Materials, 29
H. Bikas, P. Stavropoulos, G. Chryssolouris (2016)
Additive manufacturing methods and modelling approaches: a critical reviewThe International Journal of Advanced Manufacturing Technology, 83
J. Gu, J. Catchmark (2013)
Polylactic acid composites incorporating casein functionalized cellulose nanowhiskersJournal of Biological Engineering, 7
Makki Abdelmouleh, S. Boufi, M. Belgacem, A. Dufresne, A. Gandini (2005)
Modification of cellulose fibers with functionalized silanes : Effect of the fiber treatment on the mechanical performances of cellulose-thermoset compositesJournal of Applied Polymer Science, 98
V. Li, Conner Dunn, Zhe Zhang, Yulin Deng, H. Qi (2017)
Direct Ink Write (DIW) 3D Printed Cellulose Nanocrystal Aerogel StructuresScientific Reports, 7
Xiao Kuang, Zeang Zhao, Kaijuan Chen, D. Fang, G. Kang, H. Qi (2018)
High-Speed 3D Printing of High-Performance Thermosetting Polymers via Two-Stage Curing.Macromolecular rapid communications, 39 7
Gustav Kuhiman, Cedi P4OhiCÜi, Gustav Kuhirnan (2020)
A Progress ReportGirty
Xinhao Feng, Zhaozhe Yang, S. Chmely, Qingwen Wang, Siqun Wang, Yanjun Xie (2017)
Lignin-coated cellulose nanocrystal filled methacrylate composites prepared via 3D stereolithography printing: Mechanical reinforcement and thermal stabilization.Carbohydrate polymers, 169
Hsin-Ho Huang, P. Lindblad (2013)
Wide-dynamic-range promoters engineered for cyanobacteriaJournal of Biological Engineering, 7
Zeang Zhao, Zeang Zhao, Jiangtao Wu, Xiaoming Mu, Haosen Chen, H. Qi, Daining Fang, Daining Fang (2017)
Desolvation Induced Origami of Photocurable Polymers by Digit Light Processing.Macromolecular rapid communications, 38 13
Behzad Esmaeilian, S. Behdad, Ben Wang (2016)
The evolution and future of manufacturing: A reviewScopus
Fanli Yang, Min Zhang, B. Bhandari (2017)
Recent development in 3D food printingCritical Reviews in Food Science and Nutrition, 57
C. Ventola (2014)
Medical Applications for 3D Printing: Current and Projected Uses.P & T : a peer-reviewed journal for formulary management, 39 10
O. Faruk, A. Błędzki, H. Fink, M. Sain (2014)
Progress Report on Natural Fiber Reinforced CompositesMacromolecular Materials and Engineering, 299
Napolabel Palaganas, J. Mangadlao, A. Leon, Jerome Palaganas, K. Pangilinan, Yan Lee, R. Advíncula (2017)
3D Printing of Photocurable Cellulose Nanocrystal Composite for Fabrication of Complex Architectures via Stereolithography.ACS applied materials & interfaces, 9 39
A. Leon, Qiyi Chen, Napolabel Palaganas, Jerome Palaganas, Jill Manapat, R. Advíncula (2016)
High performance polymer nanocomposites for additive manufacturing applicationsReactive & Functional Polymers, 103
Jiangtao Wu, Zeang Zhao, Craig Hamel, Xiaoming Mu, Xiao Kuang, Zaoyang Guo, H. Qi (2018)
Evolution of material properties during free radical photopolymerizationJournal of The Mechanics and Physics of Solids, 112
J. Felix, P. Gatenholm, H. Schreiber (1994)
Plasma modification of cellulose fibers: Effects on some polymer composite propertiesJournal of Applied Polymer Science, 51
Anuj Kumar, Y. Negi, N. Bhardwaj, V. Choudhary (2013)
Synthesis And Characterization Of Cellulose Nanocrystals/PVA Based BionanocompositeAdvanced Materials Letters, 4
A. Vitale, M. Hennessy, O. Matar, J. Cabral (2015)
Interfacial Profile and Propagation of Frontal Photopolymerization WavesMacromolecules, 48
E. Jansen, R. Sladek, H. Bahar, A. Yaffe, M. Gijbels, R. Kuijer, S. Bulstra, N. Guldemond, I. Binderman, L. Koole (2005)
Hydrophobicity as a design criterion for polymer scaffolds in bone tissue engineering.Biomaterials, 26 21
Clement Cheung, M. Giese, J. Kelly, W. Hamad, M. MacLachlan (2013)
Iridescent Chiral Nematic Cellulose Nanocrystal/Polymer Composites Assembled in Organic Solvents.ACS macro letters, 2 11
Howon Lee, N. Fang (2012)
Micro 3D Printing Using a Digital Projector and its Application in the Study of Soft Materials MechanicsJournal of Visualized Experiments : JoVE
한도석, 홍채환 (2010)
Polylactic acid Composites
Erika Fantino, A. Chiappone, I. Roppolo, D. Manfredi, R. Bongiovanni, C. Pirri, F. Calignano (2016)
3D Printing of Conductive Complex Structures with In Situ Generation of Silver NanoparticlesAdvanced Materials, 28
N. Wang, Enyong Ding, R. Cheng (2007)
Surface modification of cellulose nanocrystalsFrontiers of Chemical Engineering in China, 1
Stephanie Kedzior, J. Zoppe, R. Berry, E. Cranston (2019)
Recent advances and an industrial perspective of cellulose nanocrystal functionalization through polymer graftingCurrent Opinion in Solid State and Materials Science
Carl Schubert, M. Langeveld, L. Donoso (2013)
Innovations in 3D printing: a 3D overview from optics to organsBritish Journal of Ophthalmology, 98
S. Eichhorn, A. Dufresne, M. Aranguren, N. Marcovich, Jeffrey Capadona, S. Rowan, C. Weder, W. Thielemans, M. Roman, Scott Renneckar, W. Gindl, S. Veigel, J. Keckes, H. Yano, K. Abe, M. Nogi, A. Nakagaito, A. Mangalam, J. Simonsen, A. Benight, A. Bismarck, L. Berglund, T. Peijs (2010)
Review: current international research into cellulose nanofibres and nanocompositesJournal of Materials Science, 45
J. Lewis (2006)
Direct Ink Writing of 3D Functional MaterialsAdvanced Functional Materials, 16
D. Puglia, E. Fortunati, J. Kenny (2016)
Multifunctional Polymeric Nanocomposites Based on Cellulosic Reinforcements
V. Vardanyan, B. Poaty, Grégory Chauve, V. Landry, T. Galstian, B. Riedl (2014)
Mechanical properties of UV-waterborne varnishes reinforced by cellulose nanocrystalsJournal of Coatings Technology and Research, 11
Sandeep Kumar, M. Hofmann, B. Steinmann, E. Foster, C. Weder (2012)
Reinforcement of stereolithographic resins for rapid prototyping with cellulose nanocrystals.ACS applied materials & interfaces, 4 10
A. Gladman, A. Gladman, Elisabetta Matsumoto, Elisabetta Matsumoto, R. Nuzzo, L. Mahadevan, L. Mahadevan, J. Lewis, J. Lewis (2016)
Biomimetic 4D printing.Nature materials, 15 4
Bernardo Yáñez-Soto, S. Liliensiek, Christopher Murphy, P. Nealey (2013)
Biochemically and topographically engineered poly(ethylene glycol) diacrylate hydrogels with biomimetic characteristics as substrates for human corneal epithelial cells.Journal of biomedical materials research. Part A, 101 4
Jun Yang, Chunrui Han, Jiufang Duan, Feng Xu, R. Sun (2013)
Mechanical and viscoelastic properties of cellulose nanocrystals reinforced poly(ethylene glycol) nanocomposite hydrogels.ACS applied materials & interfaces, 5 8
Junmin Zhu, R. Marchant (2011)
Design properties of hydrogel tissue-engineering scaffoldsExpert Review of Medical Devices, 8
A. Vitale, M. Hennessy, O. Matar, J. Cabral (2015)
A Unified Approach for Patterning via Frontal PhotopolymerizationAdvanced Materials, 27
Kajsa Markstedt, A. Mantas, Ivan Tournier, H. Ávila, D. Hägg, P. Gatenholm (2015)
3D Bioprinting Human Chondrocytes with Nanocellulose-Alginate Bioink for Cartilage Tissue Engineering Applications.Biomacromolecules, 16 5
John Warner, P. Soman, Wei Zhu, Matthew Tom, Shaochen Chen (2016)
Design and 3D Printing of Hydrogel Scaffolds with Fractal Geometries.ACS biomaterials science & engineering, 2 10
S. Eichhorn, C. Baillie, N. Zafeiropoulos, L. Mwaikambo, M. Ansell, A. Dufresne, K. Entwistle, P. Herrera‐Franco, G. Escamilla, L. Groom, M. Hughes, C. Hill, T. Rials, P. Wild (2001)
Review: Current international research into cellulosic fibres and compositesJournal of Materials Science, 36
Zeang Zhao, Zeang Zhao, Jiangtao Wu, Xiaoming Mu, Haosen Chen, H. Qi, Daining Fang, Daining Fang (2017)
Origami by frontal photopolymerizationScience Advances, 3
C. Tan, Junjie Peng, Weihong Lin, Xing Yu-xiu, Kai Xu, Jiancheng Wu, Mingcai Chen (2015)
Role of surface modification and mechanical orientation on property enhancement of cellulose nanocrystals/polymer nanocompositesEuropean Polymer Journal, 62
Matt Zarek, M. Layani, I. Cooperstein, Ela Sachyani, D. Cohn, S. Magdassi (2016)
3D Printing of Shape Memory Polymers for Flexible Electronic DevicesAdvanced Materials, 28
Samuel Eyley, W. Thielemans (2014)
Surface modification of cellulose nanocrystals.Nanoscale, 6 14
H. Ono, Toshihiko Matsui, Ikuya Miyamato (1998)
Dispersion of cellulose
K. Oksman, Y. Aitomäki, A. Mathew, G. Siqueira, Qi Zhou, Svetlana Butylina, S. Tanpichai, Xiaojian Zhou, S. Hooshmand (2016)
Review of the recent developments in cellulose nanocomposite processingComposites Part A-applied Science and Manufacturing, 83
Bettina Wendel, D. Rietzel, F. Kühnlein, R. Feulner, G. Huelder, E. Schmachtenberg (2008)
Additive Processing of PolymersMacromolecular Materials and Engineering, 293
Jooyoun Kim, G. Montero, Youssef Habibi, J. Hinestroza, J. Genzer, D. Argyropoulos, O. Rojas (2009)
Dispersion of cellulose crystallites by nonionic surfactants in a hydrophobic polymer matrixPolymer Engineering and Science, 49
Kai Liu, Hunan Liang, Joseph Nasrallah, Lihui Chen, Liulian Huang, Y. Ni (2016)
Preparation of the CNC/Ag/beeswax composites for enhancing antibacterial and water resistance properties of paper.Carbohydrate polymers, 142
Samy Tunchel, A. Blay, R. Kolerman, E. Mijiritsky, J. Shibli (2016)
3D Printing/Additive Manufacturing Single Titanium Dental Implants: A Prospective Multicenter Study with 3 Years of Follow-UpInternational Journal of Dentistry, 2016
A. Chiappone, Erika Fantino, I. Roppolo, M. Lorusso, D. Manfredi, P. Fino, C. Pirri, F. Calignano (2016)
3D Printed PEG-Based Hybrid Nanocomposites Obtained by Sol-Gel Technique.ACS applied materials & interfaces, 8 8
Ayman Mabrouk, A. Ferraria, A. Rego, S. Boufi (2013)
Highly transparent nancomposite films based on polybutylmethacrylate and functionalized cellulose nanocrystalsCellulose, 20
Jiangtao Wu, Zeang Zhao, Xiao Kuang, Craig Hamel, D. Fang, H. Qi (2018)
Reversible shape change structures by grayscale pattern 4D printingMultifunctional Materials, 1
L. Heux, A. Chauve, C. Bonini (2000)
Nonflocculating and Chiral-Nematic Self-ordering of Cellulose Microcrystals Suspensions in Nonpolar SolventsLangmuir, 16
A. Vitale, J. Cabral (2016)
Frontal Conversion and Uniformity in 3D Printing by PhotopolymerisationMaterials, 9
Qi Chen, Ping Liu, Fuchun Nan, Lijuan Zhou, Jianming Zhang (2014)
Tuning the iridescence of chiral nematic cellulose nanocrystal films with a vacuum-assisted self-assembly technique.Biomacromolecules, 15 11
Jea-Young Choi, Sayantani Das, N. Theodore, Inho Kim, C. Honsberg, H. Choi, T. Alford (2015)
Advances in 2D/3D Printing of Functional Nanomaterials and Their ApplicationsECS Journal of Solid State Science and Technology, 4
S. Joshi, A. Sheikh (2015)
3D printing in aerospace and its long-term sustainabilityVirtual and Physical Prototyping, 10
Ana Querejeta-Fernández, Grégory Chauve, M. Méthot, J. Bouchard, E. Kumacheva (2014)
Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals.Journal of the American Chemical Society, 136 12
Klaudius Henke, Sebastian Treml (2012)
Wood based bulk material in 3D printing processes for applications in constructionEuropean Journal of Wood and Wood Products, 71
M. Nogi, N. Komoda, K. Otsuka, K. Suganuma (2013)
Foldable nanopaper antennas for origami electronics.Nanoscale, 5 10
R. Moon, A. Martini, J. Nairn, J. Simonsen, J. Youngblood (2011)
Cellulose nanomaterials review: structure, properties and nanocomposites.Chemical Society reviews, 40 7
J. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, Ashley Johnson, David Kelly, Kai Chen, R. Pinschmidt, J. Rolland, A. Ermoshkin, E. Samulski, J. Desimone (2015)
Continuous liquid interface production of 3D objectsScience, 347
I. Siró, D. Plackett (2010)
Microfibrillated cellulose and new nanocomposite materials: a reviewCellulose, 17
Affdl, Wright Patterson (1976)
The Halpin-Tsai Equations: A ReviewPolymer Engineering and Science, 16
Shanhong Xu, Natalie Girouard, G. Schueneman, M. Shofner, J. Meredith (2013)
Mechanical and thermal properties of waterborne epoxy composites containing cellulose nanocrystalsPolymer, 54
A. Pawar, Gabriel Saada, I. Cooperstein, Liraz Larush, Joshua Jackman, S. Tabaei, Nam‐Joon Cho, S. Magdassi (2016)
High-performance 3D printing of hydrogels by water-dispersible photoinitiator nanoparticlesScience Advances, 2
Cheng Sun, N. Fang, Dongmin Wu, Xiang Zhang (2005)
Projection micro-stereolithography using digital micro-mirror dynamic maskSensors and Actuators A-physical, 121
Cellulose (2019) 26:3973–3985 https://doi.org/10.1007/s10570-019-02353-9(0123456789().,-volV)(0123456789().,-volV) ORIGINAL RESEARCH 3D printed cellulose nanocrystal composites through digital light processing . . . . Vincent Chi-Fung Li Xiao Kuang Arie Mulyadi Craig M. Hamel Yulin Deng H. Jerry Qi Received: 5 September 2018 / Accepted: 27 February 2019 / Published online: 5 March 2019 Springer Nature B.V. 2019 Abstract Cellulose Nanocrystals (CNC) have compatibility with PEGDA matrix, 1,3-diglycerolate received significant attention due to their high diacrylate (DiGlyDA) that has a similar chemical Young’s modulus, high strength, biocompatibility, structure but also has hydroxyl groups was blended and renewability. These properties make them ideal as with PEGDA. The dispersibility of CNC was charac- a reinforcement phase for polymer composites. How- terized by the Halpin–Tsai model and polarized light ever, typical composite processing techniques have microscopy. Mechanical testing results indicated that limitation in efficiently fabricating composites with mechanical properties of DLP 3D printed composites different shapes. Inspired by the emerging technology were improved by CNC incorporation. Furthermore, of 3D printing, this work utilized the digital light curing layer thickness during DLP 3D printing can processing (DLP) 3D printing approach to fabricate also be used to tune the composites’ mechanical and CNC reinforced poly (ethylene glycol) diacrylate water
Cellulose – Springer Journals
Published: Mar 5, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.