Access the full text.
Sign up today, get DeepDyve free for 14 days.
J. Griffin, B. Löwenberg (1986)
Clonogenic cells in acute myeloblastic leukemia.Blood, 68 6
W. Terpstra, Ploemacher, Arie Prins, K. Lom, K. Pouwels, A. Wognum, G. Wagemaker, B. Lowenberg, J. Wielenga (1996)
Fluorouracil selectively spares acute myeloid leukemia cells with long-term growth abilities in immunodeficient mice and in culture.Blood, 88 6
S. Kamel-Reid, Michelle Letarte, M. Doedens, Adonna Greaves, Barbara Murdoch, T. Grunberger, T. Lapidot, Paul Thorner, Melvin Freedman, Robert Phillips (1991)
Bone marrow from children in relapse with pre-B acute lymphoblastic leukemia proliferates and disseminates rapidly in scid mice.Blood, 78 11
T. Lapidot, F. Pflumio, M. Doedens, B. Murdoch, Douglas Williams, J. Dick (1992)
Cytokine stimulation of multilineage hematopoiesis from immature human cells engrafted in SCID mice.Science, 255 5048
J. Lessard, G. Sauvageau (2003)
Bmi-1 determines the proliferative capacity of normal and leukaemic stem cellsNature, 423
C. Brendel, B. Mohr, C. Schimmelpfennig, J. Müller, M. Bornhäuser, M. Schmidt, M. Ritter, G. Ehninger, A. Neubauer (1999)
Detection of cytogenetic aberrations both in CD90 (Thy-1)-positive and (Thy-1)-negative stem cell (CD34) subfractions of patients with acute and chronic myeloid leukemiasLeukemia, 13
L. Ailles, R. Humphries, T. Thomas, D. Hogge (1999)
Retroviral marking of acute myelogenous leukemia progenitors that initiate long-term culture and growth in immunodeficient mice.Experimental hematology, 27 11
G. Guenechea, J. Segovia, B. Albella, M. Lamana, M. Ramírez, C. Regidor, M. Fernández, J. Bueren (1999)
Delayed engraftment of nonobese diabetic/severe combined immunodeficient mice transplanted with ex vivo-expanded human CD34(+) cord blood cells.Blood, 93 3
M. Al-Hajj, M. Wicha, Adalberto Benito-Hernández, S. Morrison, M. Clarke (2003)
Prospective identification of tumorigenic breast cancer cellsProceedings of the National Academy of Sciences of the United States of America, 100
Y. Guan, B. Gerhard, D. Hogge (2003)
Detection, isolation, and stimulation of quiescent primitive leukemic progenitor cells from patients with acute myeloid leukemia (AML).Blood, 101 8
H. Miyoshi, K. Smith, D. Mosier, Inder Verma, B. Torbett (1999)
Transduction of human CD34+ cells that mediate long-term engraftment of NOD/SCID mice by HIV vectors.Science, 283 5402
A. Follenzi, L. Ailles, S. Bakovic, M. Geuna, L. Naldini (2000)
Gene transfer by lentiviral vectors is limited by nuclear translocation and rescued by HIV-1 pol sequencesNature Genetics, 25
A. Blair, D. Hogge, L. Ailles, P. Lansdorp, H. Sutherland (1997)
Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo.Blood, 89 9
M. Guzman, S. Neering, D. Upchurch, B. Grimes, D. Howard, D. Rizzieri, S. Luger, C. Jordan (2001)
Nuclear factor-kappaB is constitutively activated in primitive human acute myelogenous leukemia cells.Blood, 98 8
S. Kamel‐Reid, M. Letarte, C. Sirard, M. Doedens, T. Grunberger, G. Fulop, M. Freedman, R. Phillips, J. Dick (1989)
A model of human acute lymphoblastic leukemia in immune-deficient SCID mice.Science, 246 4937
N. Shimizu, Toshihiko Hashizume, K. Shingaki, June-ko Kawamoto (2003)
Amplification of plasmids containing a mammalian replication initiation region is mediated by controllable conflict between replication and transcription.Cancer research, 63 17
A. Larochelle, J. Vormoor, H. Hanenberg, Jean Wang, M. Bhatia, T. Lapidot, T. Moritz, B. Murdoch, Xiang Xiao, I. Kato, David Williams, J. Dick (1996)
Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: Implications for gene therapyNature Medicine, 2
G. Guenechea, O. Gan, C. Dorrell, J. Dick (2001)
Distinct classes of human stem cells that differ in proliferative and self-renewal potentialNature Immunology, 2
Guillermo Guenechea, Olga Gan, Takeshi Inamitsu, Craig Dorrell, Daniel Pereira, Michael Kelly, Luigi Naldini, John Dick (2000)
Transduction of human CD34+ CD38- bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors.Molecular therapy : the journal of the American Society of Gene Therapy, 1 6
E. McCulloch (1983)
Stem cells in normal and leukemic hemopoiesis (Henry Stratton Lecture, 1982)Blood, 62
S. Kamel-Reid, John Dick (1988)
Engraftment of immune-deficient mice with human hematopoietic stem cells.Science, 242 4886
M. Greaves (1986)
Differentiation-linked leukemogenesis in lymphocytes.Science, 234 4777
C. Jordan, D. Upchurch, S. Szilvassy, M. Guzman, D. Howard, AL Pettigrew, T. Meyerrose, R. Rossi, B. Grimes, D. Rizzieri, S. Luger, G. Phillips (2000)
The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cellsLeukemia, 14
M. Guzman, C. Swiderski, D. Howard, B. Grimes, R. Rossi, S. Szilvassy, C. Jordan (2002)
Preferential induction of apoptosis for primary human leukemic stem cellsProceedings of the National Academy of Sciences of the United States of America, 99
J. Till, E. McCulloch (1980)
Hemopoietic stem cell differentiation.Biochimica et biophysica acta, 605 4
Laurie Ailles, B. Gerhard, Hiroyuki Kawagoe, Donna Hogge (1999)
Growth characteristics of acute myelogenous leukemia progenitors that initiate malignant hematopoiesis in nonobese diabetic/severe combined immunodeficient mice.Blood, 94 5
J. Marx (2003)
Cancer research. Mutant stem cells may seed cancer.Science, 301 5638
W. Terpstra, A. Prins, T. Visser, B. Wognum, G. Wagemaker, B. Löwenberg, J. Wielenga (1995)
Conditions for engraftment of human acute myeloid leukemia (AML) in SCID mice.Leukemia, 9 9
J. Dick (2003)
Breast cancer stem cells revealedProceedings of the National Academy of Sciences of the United States of America, 100
W. Rombouts, A. Martens, R. Ploemacher (2000)
Identification of variables determining the engraftment potential of human acute myeloid leukemia in the immunodeficient NOD/SCID human chimera modelLeukemia, 14
A. Blair, D. Hogge, H. Sutherland (1998)
Most acute myeloid leukemia progenitor cells with long-term proliferative ability in vitro and in vivo have the phenotype CD34(+)/CD71(-)/HLA-DR-.Blood, 92 11
T. Lapidot, C. Sirard, J. Vormoor, B. Murdoch, T. Hoang, J. Cáceres-Cortés, M. Minden, B. Paterson, M. Caligiuri, J. Dick (1994)
A cell initiating human acute myeloid leukaemia after transplantation into SCID miceNature, 367
E. Conneally, J. Cashman, A. Petzer, C. Eaves (1997)
Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice.Proceedings of the National Academy of Sciences of the United States of America, 94 18
D. Bonnet, J. Dick (1997)
Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cellNature Medicine, 3
R. Bernards, R. Weinberg (2002)
A progression puzzle.Nature, 418 6900
F. Mazurier, O. Gan, Joby McKenzie, M. Doedens, J. Dick (2004)
Lentivector-mediated clonal tracking reveals intrinsic heterogeneity in the human hematopoietic stem cell compartment and culture-induced stem cell impairment.Blood, 103 2
L. Allen (2003)
Stem cells.The New England journal of medicine, 349 15
Sheila Singh, I. Clarke, Mizuhiko Terasaki, Victoria Bonn, C. Hawkins, J. Squire, P. Dirks (2003)
Identification of a cancer stem cell in human brain tumors.Cancer research, 63 18
J. Dick (2003)
Stem cells: Self-renewal writ in bloodNature, 423
M. Bhatia, Jean Wang, U. Kapp, D. Bonnet, J. Dick (1997)
Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice.Proceedings of the National Academy of Sciences of the United States of America, 94 10
T. Reya, S. Morrison, M. Clarke, I. Weissman (2001)
Stem cells, cancer, and cancer stem cellsNature, 414
(2000)
in the immun - odeficient NOD / SCID human chimera model
Emerging evidence suggests cancer stem cells sustain neoplasms; however, little is understood of the normal cell initially targeted and the resultant cancer stem cells. We show here, by tracking individual human leukemia stem cells (LSCs) in nonobese diabetic–severe combined immunodeficiency mice serially transplanted with acute myeloid leukemia cells, that LSCs are not functionally homogeneous but, like the normal hematopoietic stem cell (HSC) compartment, comprise distinct hierarchically arranged LSC classes. Distinct LSC fates derived from heterogeneous self-renewal potential. Some LSCs emerged only in recipients of serial transplantation, indicating they divided rarely and underwent self-renewal rather than commitment after cell division within primary recipients. Heterogeneity in LSC self-renewal potential supports the hypothesis that they derive from normal HSCs. Furthermore, normal developmental processes are not completely abolished during leukemogenesis. The existence of multiple stem cell classes shows the need for LSC-targeted therapies.
Nature Immunology – Springer Journals
Published: May 30, 2004
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.