Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds.

Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric... Human embryonic stem (hES) cells have the potential to form various cell types, including neural cells for the treatment of diseases such as Parkinson's, spinal cord injury, and glaucoma. Here, we have investigated the neuronal differentiation of hES cells on three-dimensional scaffolds fabricated from degradable poly(alpha-hydroxy esters) including poly(lactic-co-glycolic acid) and poly(L-lactic acid). When cultured in vitro, neural rosette-like structures developed throughout the scaffolds with differentiation dependent on factors in the medium (e.g., retinoic acid [RA], nerve growth factor [NGF], and neurotrophin 3 [NT-3]) and the differentiation stage of the cells. Specifically, enhanced numbers of neural structures and staining of nestin (a marker of neural precursors) and beta(III)-tubulin (indicative of neural differentiation) were observed with hES cell-seeded polymer scaffolds when cultured with both NGF and NT-3 when compared with control medium. In addition, vascular structures were found throughout the engineered tissues when cultured with the neurotrophins, but not in the presence of RA. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Tissue engineering Pubmed

Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds.

Tissue engineering , Volume 11 (3-4): 7 – Aug 1, 2005

Neurotrophin-induced differentiation of human embryonic stem cells on three-dimensional polymeric scaffolds.


Abstract

Human embryonic stem (hES) cells have the potential to form various cell types, including neural cells for the treatment of diseases such as Parkinson's, spinal cord injury, and glaucoma. Here, we have investigated the neuronal differentiation of hES cells on three-dimensional scaffolds fabricated from degradable poly(alpha-hydroxy esters) including poly(lactic-co-glycolic acid) and poly(L-lactic acid). When cultured in vitro, neural rosette-like structures developed throughout the scaffolds with differentiation dependent on factors in the medium (e.g., retinoic acid [RA], nerve growth factor [NGF], and neurotrophin 3 [NT-3]) and the differentiation stage of the cells. Specifically, enhanced numbers of neural structures and staining of nestin (a marker of neural precursors) and beta(III)-tubulin (indicative of neural differentiation) were observed with hES cell-seeded polymer scaffolds when cultured with both NGF and NT-3 when compared with control medium. In addition, vascular structures were found throughout the engineered tissues when cultured with the neurotrophins, but not in the presence of RA.

Loading next page...
 
/lp/pubmed/neurotrophin-induced-differentiation-of-human-embryonic-stem-cells-on-q3HDqOCWwT

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
1076-3279
DOI
10.1089/ten.2005.11.506
pmid
15869429

Abstract

Human embryonic stem (hES) cells have the potential to form various cell types, including neural cells for the treatment of diseases such as Parkinson's, spinal cord injury, and glaucoma. Here, we have investigated the neuronal differentiation of hES cells on three-dimensional scaffolds fabricated from degradable poly(alpha-hydroxy esters) including poly(lactic-co-glycolic acid) and poly(L-lactic acid). When cultured in vitro, neural rosette-like structures developed throughout the scaffolds with differentiation dependent on factors in the medium (e.g., retinoic acid [RA], nerve growth factor [NGF], and neurotrophin 3 [NT-3]) and the differentiation stage of the cells. Specifically, enhanced numbers of neural structures and staining of nestin (a marker of neural precursors) and beta(III)-tubulin (indicative of neural differentiation) were observed with hES cell-seeded polymer scaffolds when cultured with both NGF and NT-3 when compared with control medium. In addition, vascular structures were found throughout the engineered tissues when cultured with the neurotrophins, but not in the presence of RA.

Journal

Tissue engineeringPubmed

Published: Aug 1, 2005

There are no references for this article.