Access the full text.
Sign up today, get DeepDyve free for 14 days.
V. Stepanyuk, R. Zeller, P. Dederichs, I. Mertig (2008)
Electronic structure and magnetic properties of dilute Co alloys with transition-metal impurities.Physical review. B, Condensed matter, 49 8
J. Dankovicová (1997)
CzechJournal of the International Phonetic Association, 27
Y. Tserkovnyak, A. Brataas, G. Bauer, B. Halperin (2004)
Nonlocal magnetization dynamics in ferromagnetic heterostructuresReviews of Modern Physics, 77
Yi Liu, A. Starikov, Zhe Yuan, P. Kelly (2011)
First-principles calculations of magnetization relaxation in pure Fe, Co, and Ni with frozen thermal lattice disorderPhysical Review B, 84
H. Ebert (1999)
Fully Relativistic Band Structure Calculations for Magnetic Solids - Formalism and Application, 535
I. Barsukov, S. Mankovsky, A. Rubacheva, R. Meckenstock, D. Spoddig, J. Lindner, N. Melnichak, B. Krumme, S. Makarov, H. Wende, H. Ebert, M. Farle (2011)
Magnetocrystalline anisotropy and Gilbert damping in iron-rich Fe1−xSix thin filmsPhysical Review B, 84
W. Ament, G. Rado (1955)
Electromagnetic Effects of Spin Wave Resonance in Ferromagnetic MetalsPhysical Review, 97
V. Kamberský, C. Patton (1975)
Spin-wave relaxation and phenomenological damping in ferromagnetic resonancePhysical Review B, 11
William Butler (1985)
Theory of electronic transport in random alloys: Korringa-Kohn-Rostoker coherent-potential approximation.Physical review. B, Condensed matter, 31 6
ed. DreyssouA (2000)
Electronic structure and physical properties of solids
A. Starikov, P. Kelly, A. Brataas, Y. Tserkovnyak, G. Bauer (2010)
Unified first-principles study of gilbert damping, spin-flip diffusion, and resistivity in transition metal alloys.Physical review letters, 105 23
M. Jirsa (1982)
Exchange-Conductivity Broadening of SSWR Line in Metallic Thin FilmsPhysica Status Solidi B-basic Solid State Physics, 113
K. Gilmore, Y. Idzerda, M. Standards, Technology, Gaithersburg, Md, Montana University, Bozeman, Mt (2007)
Identification of the dominant precession-damping mechanism in Fe, Co, and Ni by first-principles calculations.Physical review letters, 99 2
Stefanou, Oswald, Zeller, Dederichs (1987)
Charge and magnetization perturbations around impurities in nickel.Physical review. B, Condensed matter, 35 13
H. Ebert, D. Ködderitzsch, J. Minár (2011)
Calculating condensed matter properties using the KKR-Green's function method—recent developments and applicationsReports on Progress in Physics, 74
H. Suhl (1998)
Theory of the Magnetic Damping Constant7th Joint MMM-Intermag Conference. Abstracts (Cat. No.98CH36275)
D. Ködderitzsch, Hubert Ebert, D. Rowlands, Arthur Ernst (2007)
Relativistic formulation of the Korringa–Kohn–Rostoker nonlocal coherent-potential approximationNew Journal of Physics, 9
M. Rose, W. Furry (1961)
Relativistic Electron TheoryAmerican Journal of Physics, 29
V. Korenman, R. Prange (1972)
Anomalous Damping of Spin Waves in Magnetic MetalsPhysical Review B, 6
(2004)
IEEE Transactions on Magnetics 40
A. Brataas, Y. Tserkovnyak, G. Bauer (2008)
Scattering theory of gilbert damping.Physical review letters, 101 3
V. Kamberský (2007)
Spin-orbital Gilbert damping in common magnetic metalsPhysical Review B, 76
J. Rantschler, R. McMichael, A. Castillo, A. Shapiro, W. Egelhoff, B. Maranville, D. Pulugurtha, A. Chen, L. Connors (2007)
Effect of 3d, 4d, and 5d transition metal doping on damping in permalloy thin filmsJournal of Applied Physics, 101
H. Ebert, S. Mankovsky (2009)
Anisotropic exchange coupling in diluted magnetic semiconductors : Ab initio spin-density functional theoryPhysical Review B, 79
E. Gololobov, E. Mager, Z. Mezhevich, L. Pan (1983)
Elastic properties and root‐mean‐square dynamic displacement of niobium atoms at high pressuresPhysica Status Solidi B-basic Solid State Physics, 119
T. Gilbert (2004)
A phenomenological theory of damping in ferromagnetic materialsIEEE Transactions on Magnetics, 40
Bret Heinrich, R. Urban, G. Woltersdorf (2002)
Magnetic relaxations in metallic multilayersIEEE Transactions on Magnetics, 38
G. Woltersdorf, Matthias Kiessling, G. Meyer, Jan-Ulrich Thiele, C. Back (2008)
Damping by slow relaxing rare earth impurities in Ni80Fe20.Physical review letters, 102 25
P. Jensen, K. Bennemann, P. Poulopoulos, M. Farle, F. Wilhelm, K. Baberschke (1999)
Enhanced induced magnetization in coupled magnetic trilayers in the presence of spin fluctuationsPhysical Review B, 60
V. Kamberský (1970)
On the Landau-Lifshitz relaxation in ferromagnetic metalsCanadian Journal of Physics, 48
(2011)
Ab initio calculation of the Gilbert damping parameter via the linear response formalism.
R. Arias, D. Mills (1999)
Extrinsic contributions to the ferromagnetic resonance response of ultrathin filmsPhysical Review B, 60
M. Fähnle, D. Steiauf (2006)
Breathing Fermi surface model for noncollinear magnetization: a generalization of the Gilbert equationPhysical Review B, 73
V. Kamberský (1976)
On ferromagnetic resonance damping in metalsCzechoslovak Journal of Physics B, 26
M. Oogane, Takeshi Wakitani, S. Yakata, R. Yilgin, Y. Ando, A. Sakuma, T. Miyazaki (2006)
Magnetic Damping in Ferromagnetic Thin FilmsJapanese Journal of Applied Physics, 45
S. Bhagat, P. Lubitz (1974)
Temperature variation of ferromagnetic relaxation in the 3 d transition metalsPhysical Review B, 10
C. Vittoria, S. Yoon, A. Widom (2009)
Relaxation mechanism for ordered magnetic materialsPhysical Review B, 81
A. Brataas, Y. Tserkovnyak, G. Bauer (2011)
Magnetization dissipation in ferromagnets from scattering theoryPhysical Review B, 84
(2007)
New Journal of Physics 9
A Kubo-Greenwood-like equation for the Gilbert damping parameter α is presented that is based on the linear response formalism. Its implementation using the fully relativistic Korringa-Kohn-Rostoker band structure method in combination with coherent potential approximation alloy theory allows it to be applied to a wide range of situations. This is demonstrated with results obtained for the bcc alloy system Fe 1 - x Co x as well as for a series of alloys of Permalloy with 5 d transition metals. To account for the thermal displacements of atoms as a scattering mechanism, an alloy-analogy model is introduced. The corresponding calculations for Ni correctly describe the rapid change of α when small amounts of substitutional Cu are introduced.
Physical Review Letters – American Physical Society (APS)
Published: Aug 5, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.