Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Finzi, D. Moore, E. DeLucia, J. Lichter, K. Hofmockel, R. Jackson, Hyunseok Kim, R. Matamala, H. McCarthy, R. Oren, J. Pippen, W. Schlesinger (2006)
Progressive nitrogen limitation of ecosystem processes under elevated CO2 in a warm-temperate forest.Ecology, 87 1
M. Rillig, C. Field, M. Allen (1999)
Fungal root colonization responses in natural grasslands after long‐term exposure to elevated atmospheric CO2Global Change Biology, 5
F. Fletcher
Soil FertilityNature, 91
E. Baggs, M. Richter, G. Cadisch, U. Hartwig (2003)
Denitrification in grass swards is increased under elevated atmospheric CO2Soil Biology & Biochemistry, 35
W. Cheng, Dale Johnson (1998)
Elevated CO2, rhizosphere processes, and soil organic matter decompositionPlant and Soil, 202
Virginia Matzek, P. Vitousek (2003)
Nitrogen Fixation in Bryophytes, Lichens, and Decaying Wood along a Soil-age Gradient in Hawaiian Montane Rain Forest1, 35
E. Paterson, J. Hall, E. Rattray, B. Griffiths, K. Ritz, K. Killham (1997)
Effect of elevated CO2 on rhizosphere carbon flow and soil microbial processesGlobal Change Biology, 3
M. Corre, F. Beese, R. Brumme (2003)
SOIL NITROGEN CYCLE IN HIGH NITROGEN DEPOSITION FOREST: CHANGES UNDER NITROGEN SATURATION AND LIMINGEcological Applications, 13
I. Luis, J. Irigoyen, M. Sánchez-Díaz (1999)
Elevated CO2 enhances plant growth in droughted N2-fixing alfalfa without improving water statusPhysiologia Plantarum, 107
Des Ross, Paul Newton, K. Tate (2004)
Elevated [CO2] effects on herbage production and soil carbon and nitrogen pools and mineralization in a species-rich, grazed pasture on a seasonally dry sandPlant and Soil, 260
W. Holmes, D. Zak, K. Pregitzer, J. King (2003)
Soil nitrogen transformations under Populus tremuloides, Betula papyrifera and Acer saccharum following 3 years exposure to elevated CO2 and O3Global Change Biology, 9
Yiqi Luo, J. Reynolds (1999)
VALIDITY OF EXTRAPOLATING FIELD CO2 EXPERIMENTS TO PREDICT CARBON SEQUESTRATION IN NATURAL ECOSYSTEMSEcology, 80
R. Nowak, D. Ellsworth, Stanley Smith (2004)
Functional responses of plants to elevated atmospheric CO2– do photosynthetic and productivity data from FACE experiments support early predictions?New Phytologist, 162
M. Rillig (2004)
Arbuscular mycorrhizae and terrestrial ecosystem processesEcology Letters, 7
P. Fransson, Andrew Taylor, R. Finlay (2001)
Elevated atmospheric CO2 alters root symbiont community structure in forest trees.The New phytologist, 152 3
Shuijin Hu, Shuijin Hu, F. Chapin, F. Chapin, M. Firestone, C. Field, N. Chiariello (2001)
Nitrogen limitation of microbial decomposition in a grassland under elevated CO2Nature, 409
Mark Williams, C. Rice, C. Owensby (2000)
Carbon dynamics and microbial activity in tallgrass prairie exposed to elevated CO2 for 8 yearsPlant and Soil, 227
R. Oren, D. Ellsworth, K. Johnsen, N. Phillips, B. Ewers, C. Maier, K. Schäfer, H. McCarthy, G. Hendrey, S. McNulty, G. Katul (2001)
Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphereNature, 411
P. Reich, S. Hobbie, Tali Lee, D. Ellsworth, J. West, D. Tilman, J. Knops, S. Naeem, Jared Trost (2006)
Nitrogen limitation constrains sustainability of ecosystem response to CO2Nature, 440
R. Gill, L. Anderson, H. Polley, H. Johnson, R. Jackson (2006)
Potential nitrogen constraints on soil carbon sequestration under low and elevated atmospheric CO2.Ecology, 87 1
D. Rasse, G. Peresta, B. Drake (2005)
Seventeen years of elevated CO2 exposure in a Chesapeake Bay Wetland: sustained but contrasting responses of plant growth and CO2 uptakeGlobal Change Biology, 11
Des Ross, K. Tate, P. Newton, Harry Clark (2002)
Decomposability of C3 and C4 grass litter sampled under different concentrations of atmospheric carbon dioxide at a natural CO2 springPlant and Soil, 240
R. Gill, R. Gill, H. Polley, H. Johnson, L. Anderson, L. Anderson, H. Maherali, R. Jackson (2002)
Nonlinear grassland responses to past and future atmospheric CO2Nature, 417
P. Groffman, N. Law, K. Belt, L. Band, G. Fisher (2004)
Nitrogen Fluxes and Retention in Urban Watershed EcosystemsEcosystems, 7
B. Hungate, P. Dijkstra, Dale Johnson, C. Hinkle, B. Drake (1999)
Elevated CO2 increases nitrogen fixation and decreases soil nitrogen mineralization in Florida scrub oakGlobal Change Biology, 5
H. Torbert, S. Prior, H. Rogers, G. Runion (2004)
Elevated atmospheric CO2 effects on N fertilization in grain sorghum and soybeanField Crops Research, 88
J. West, J. HilleRisLambers, Tali Lee, S. Hobbie, P. Reich (2005)
Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2].The New phytologist, 167 2
C. Tu, F. Booker, Dorothy Watson, Xin Chen, T. Rufty, W. Shi, Shuijin Hu (2006)
Mycorrhizal mediation of plant N acquisition and residue decomposition: Impact of mineral N inputsGlobal Change Biology, 12
L. Woods, C. Cole, L. Porter, D. Coleman (1987)
Transformations of added and indigenous nitrogen in gnotobiotic soil: A comment on the priming effectSoil Biology & Biochemistry, 19
E. Rastetter, S. Perakis, G. Shaver, G. Ågren (2005)
TERRESTRIAL C SEQUESTRATION AT ELEVATED CO2 AND TEMPERATURE: THE ROLE OF DISSOLVED ORGANIC N LOSSEcological Applications, 15
M. Daepp, D. Suter, J. Almeida, H. Isopp, U. Hartwig, M. Frehner, H. Blum, J. Nösberger, A. Lüscher (2000)
Yield response of Lolium perenne swards to free air CO2 enrichment increased over six years in a high N input system on fertile soilGlobal Change Biology, 6
Y. Kuzyakov, J. Friedel, K. Stahr (2000)
Review of mechanisms and quantification of priming effects.Soil Biology & Biochemistry, 32
M. Lukac, C. Calfapietra, D. Godbold (2003)
Production, turnover and mycorrhizal colonization of root systems of three Populus species grown under elevated CO2 (POPFACE).Global Change Biology, 9
V. Wiemken, E. Laczko, K. Ineichen, T. Boller (2001)
Effects of Elevated Carbon Dioxide and Nitrogen Fertilization on Mycorrhizal Fine Roots and the Soil Microbial Community in Beech-Spruce Ecosystems on Siliceous and Calcareous SoilMicrobial Ecology, 42
Mark Williams, C. Rice, C. Owensby (2001)
Nitrogen Competition in a Tallgrass Prairie Ecosystem Exposed to Elevated Carbon DioxideSoil Science Society of America Journal, 65
Yiqi Luo, D. Hui, De-qiang Zhang (2006)
Elevated CO2 stimulates net accumulations of carbon and nitrogen in land ecosystems: a meta-analysis.Ecology, 87 1
C. Körner, R. Asshoff, Olivier Bignucolo, S. Hättenschwiler, S. Keel, S. Peláez-Riedl, S. Pepin, R. Siegwolf, G. Zotz (2005)
Carbon Flux and Growth in Mature Deciduous Forest Trees Exposed to Elevated CO2Science, 309
R. Norby, C. Iversen (2006)
Nitrogen uptake, distribution, turnover, and efficiency of use in a CO2-enriched sweetgum forest.Ecology, 87 1
R. Phillips, S. Whalen, W. Schlesinger (2001)
Influence of atmospheric CO2 enrichment on nitrous oxide flux in a temperate forest ecosystemGlobal Biogeochemical Cycles, 15
K. Fog (1988)
THE EFFECT OF ADDED NITROGEN ON THE RATE OF DECOMPOSITION OF ORGANIC MATTERBiological Reviews, 63
Virginia Matzek, P. Vitousek (2003)
Nitrogen Fixation in Bryophytes, Lichens, and Decaying Wood along a Soil‐age Gradient in Hawaiian Montane Rain ForestBiotropica, 35
Aniel Ichter (2004)
Soil acidification induced by elevated atmospheric CO 2
D. Zak, W. Holmes, A. Finzi, R. Norby, W. Schlesinger (2003)
Soil nitrogen cycling under elevated CO2: A synthesis of forest face experimentsEcological Applications, 13
A. Meharg, J. Cairney (2000)
Ectomycorrhizas — extending the capabilities of rhizosphere remediation?Soil Biology & Biochemistry, 32
M. Carreiro, R. Sinsabaugh, D. Repert, D. Parkhurst (2000)
MICROBIAL ENZYME SHIFTS EXPLAIN LITTER DECAY RESPONSES TO SIMULATED NITROGEN DEPOSITIONEcology, 81
R. Norby, M. Cotrufo, P. Ineson, E. O'neill, J. Canadell (2001)
Elevated CO2, litter chemistry, and decomposition: a synthesisOecologia, 127
K. Treseder, M. Allen (2000)
Mycorrhizal fungi have a potential role in soil carbon storage under elevated CO2 and nitrogen depositionNew Phytologist, 147
A. Hodge, C. Campbell, A. Fitter (2001)
An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic materialNature, 413
J. Andrews, W. Schlesinger (2001)
Soil CO2 dynamics, acidification, and chemical weathering in a temperate forest with experimental CO2 enrichmentGlobal Biogeochemical Cycles, 15
A. Finzi, E. DeLucia, W. Schlesinger (2004)
Canopy N and P dynamics of a southeastern US pine forest under elevated CO2Biogeochemistry, 69
D. Read, J. Pérez‐Moreno (2003)
Mycorrhizas and nutrient cycling in ecosystems - a journey towards relevance?The New phytologist, 157 3
Romain Barnard, P. Leadley, B. Hungate (2005)
Global change, nitrification, and denitrification: A reviewGlobal Biogeochemical Cycles, 19
David Jones, J. Farrar, K. Giller (2003)
Associative Nitrogen Fixation and Root Exudation - What is Theoretically Possible in the Rhizosphere?Symbiosis, 35
M. Richter, U. Hartwig, E. Frossard, J. Nösberger, G. Cadisch (2003)
Gross fluxes of nitrogen in grassland soil exposed to elevated atmospheric pCO2 for seven yearsSoil Biology & Biochemistry, 35
Dale Johnson (2006)
Progressive N limitation in forests: review and implications for long-term responses to elevated CO2.Ecology, 87 1
P. Vitousek, K. Cassman, C. Cleveland, T. Crews, C. Field, N. Grimm, R. Howarth, Roxanne Marino, L. Martinelli, E. Rastetter, J. Sprent (2002)
Towards an ecological understanding of biological nitrogen fixationBiogeochemistry, 57-58
P. Staddon, C. Ramsey, N. Ostle, P. Ineson, A. Fitter (2003)
Rapid Turnover of Hyphae of Mycorrhizal Fungi Determined by AMS Microanalysis of 14CScience, 300
Hu, Firestone, Chapin (1999)
Soil microbial feedbacks to atmospheric CO2 enrichment.Trends in ecology & evolution, 14 11
D. Zak, K. Pregitzer, J. King, W. Holmes (2000)
Elevated atmospheric CO2, fine roots and the response of soil microorganisms: a review and hypothesisNew Phytologist, 147
R. Serraj, T. Sinclair, L. Allen (1998)
Soybean nodulation and N2 fixation response to drought under carbon dioxide enrichmentPlant Cell and Environment, 21
A. Ball (1997)
Microbial decomposition at elevated CO2 levels: effect of litter qualityGlobal Change Biology, 3
J. Klironomos, M. Allen, M. Rillig, J. Piotrowski, S. Makvandi-Nejad, B. Wolfe, J. Powell (2005)
Abrupt rise in atmospheric CO2 overestimates community response in a model plant–soil systemNature, 433
F. Booker, C. Maier (2001)
Atmospheric carbon dioxide, irrigation, and fertilization effects on phenolic and nitrogen concentrations in loblolly pine (Pinus taeda) needles.Tree physiology, 21 9
J. Colpaert, A. Laere (1996)
A comparison of the extracellular enzyme activities of two ectomycorrhizal and a leaf‐saprotrophic basidiomycete colonizing beech leaf litterNew Phytologist, 134
Stuart Chapin, P. Matson, Harold Mooney, Melissa Chapin (2002)
Principles of Terrestrial Ecosystem Ecology
T. Nakamura, T. Koike, T. Lei, K. Ohashi, T. Shinano, T. Tadano (1999)
The Effect of CO2 Enrichment on the Growth of Nodulated and Non-Nodulated Isogenic Types of Soybean Raised Under Two Nitrogen ConcentrationsPhotosynthetica, 37
W. Cheng, D. Coleman (1990)
Effect of living roots on soil organic matter decompositionSoil Biology & Biochemistry, 22
J. West, J. HilleRisLambers, Tali Lee, S. Hobbie, P. Reich (2005)
Erratum: Legume species identity and soil nitrogen supply determine symbiotic nitrogen-fixation responses to elevated atmospheric [CO2] (New Phytologist (2005) 167, (523-530))New Phytologist, 167
N. Oh, D. Richter (2004)
Soil acidification induced by elevated atmospheric CO2Global Change Biology, 10
Tali Lee, P. Reich, M. Tjoelker (2003)
Legume presence increases photosynthesis and N concentrations of co-occurring non-fixers but does not modulate their responsiveness to carbon dioxide enrichmentOecologia, 137
D. Zak, K. Pregitzer, P. Curtis, W. Holmes (2000)
ATMOSPHERIC CO2 AND THE COMPOSITION AND FUNCTION OF SOIL MICROBIAL COMMUNITIESEcological Applications, 10
D. Tissue, J. Megonigal, R. Thomas (1997)
Nitrogenase activity and N2 fixation are stimulated by elevated CO2 in a tropical N2-fixing treeOecologia, 109
F. Azam, F. Stevenson, R. Mulvaney (1989)
Chemical extraction of newly immobilized 15N and native soil N as influenced by substrate addition rate and soil treatmentsSoil Biology & Biochemistry, 21
S. Díaz, J. Grime, J. Harris, E. McPherson (1993)
Evidence of a feedback mechanism limiting plant response to elevated carbon dioxideNature, 364
P. Niklaus, C. Körner (2004)
SYNTHESIS OF A SIX-YEAR STUDY OF CALCAREOUS GRASSLAND RESPONSES TO IN SITU CO2 ENRICHMENTEcological Monographs, 74
C. Montealegre, C. Kessel, Jürg Blumenthal, H. Hur, U. Hartwig, M. Sadowsky (2000)
Elevated atmospheric CO2 alters microbial population structure in a pasture ecosystemGlobal Change Biology, 6
K. Groenigen, J. Six, B. Hungate, M. Graaff, N. Breemen, C. Kessel (2006)
Element interactions limit soil carbon storage.Proceedings of the National Academy of Sciences of the United States of America, 103 17
J. Blum, Andrea Klaue, C. Nezat, C. Driscoll, C. Johnson, T. Siccama, C. Eagar, T. Fahey, G. Likens (2002)
Mycorrhizal weathering of apatite as an important calcium source in base-poor forest ecosystemsNature, 417
S. Zanetti, U. Hartwig, Andreas Lüscher, T. Hebeisen, M. Frehner, B. Fischer, G. Hendrey, H. Blum, J. Nösberger (1996)
Stimulation of Symbiotic N2 Fixation in Trifolium repens L. under Elevated Atmospheric pCO2 in a Grassland Ecosystem, 112
K. Treseder (2004)
A meta-analysis of mycorrhizal responses to nitrogen, phosphorus, and atmospheric CO2 in field studies.The New phytologist, 164 2
P. Matson, W. McDowell, A. Townsend, P. Vitousek (1999)
The globalization of N deposition: ecosystem consequences in tropical environmentsBiogeochemistry, 46
G. Bending, D. Read (1997)
Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungiFungal Biology, 101
B. Hungate, P. Stiling, P. Dijkstra, Dale Johnson, M. Ketterer, G. Hymus, C. Hinkle, B. Drake (2004)
CO2 Elicits Long-Term Decline in Nitrogen FixationScience, 304
VALERIE Franck, B. Hungate, F. III, C. Field (1997)
Decomposition of litter produced under elevated CO2: Dependence on plant species and nutrient supplyBiogeochemistry, 36
Shuijin Hu, Jiansheng Wu, K. Burkey, M. Firestone (2005)
Plant and microbial N acquisition under elevated atmospheric CO2 in two mesocosm experiments with annual grassesGlobal Change Biology, 11
Yiqi Luo, Bo Su, W. Currie, J. Dukes, A. Finzi, U. Hartwig, B. Hungate, R. McMurtrie, R. Oren, W. Parton, D. Pataki, Rebecca Shaw, D. Zak, C. Field (2004)
Progressive Nitrogen Limitation of Ecosystem Responses to Rising Atmospheric Carbon Dioxide, 54
J. King, A. Mosier, A. Mosier, J. Morgan, D. Lecain, D. Milchunas, W. Parton (2004)
Plant Nitrogen Dynamics in Shortgrass Steppe under Elevated Atmospheric Carbon DioxideEcosystems, 7
J. Langley, B. Hungate (2003)
MYCORRHIZAL CONTROLS ON BELOWGROUND LITTER QUALITYEcology, 84
G. Runion, E. Curl, H. Rogers, P. Backman, R. Rodríguez-kábana, B. Helms (1994)
Effects of free-air CO2 enrichment on microbial populations in the rhizosphere and phyllosphere of cottonAgricultural and Forest Meteorology, 70
(2003)
Nitrogen and Climate ChangeScience, 302
M. Olsrud, J. Melillo, T. Christensen, A. Michelsen, H. Wallander, P. Olsson (2004)
Response of ericoid mycorrhizal colonization and functioning to global change factorsNew Phytologist, 162
E. Pendall, A. Mosier, J. Morgan (2004)
Rhizodeposition stimulated by elevated CO2 in a semiarid grasslandNew Phytologist, 162
J. Schimel, Jennifer Bennett (2004)
NITROGEN MINERALIZATION: CHALLENGES OF A CHANGING PARADIGMEcology, 85
Jeffrey Smith, E. Paul (1990)
The significance of soil microbial biomass estimations.
Shauna Uselman, R. Qualls, R. Thomas (1999)
A test of a potential short cut in the nitrogen cycle: The role of exudation of symbiotically fixed nitrogen from the roots of a N-fixing tree and the effects of increased atmospheric CO2 and temperaturePlant and Soil, 210
E. Williams, L. Walter, T. Ku, G. Kling, D. Zak (2003)
Effects of CO2 and nutrient availability on mineral weathering in controlled tree growth experimentsGlobal Biogeochemical Cycles, 17
K. Zwart, P. Kuikman, J. Veen (1994)
Rhizosphere protozoa: their significance in nutrient dynamics
S. Zanetti, U. Hartwig, A. Lüscher, T. Hebeisen, M. Frehner, B. Fischer, G. Hendrey, H. Blum, J. Nösberger (1996)
Stimulation of Symbiotic N, Fixation in Trifolium repens 1. under Elevated Atmospheric pC0, in a Grassland Ecosystem'
M. Hoosbeek, M. Lukac, D. Dam, D. Godbold, E. Velthorst, F. Biondi, A. Peressotti, M. Cotrufo, P. Angelis, G. Scarascia-Mugnozza (2004)
More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect?Global Biogeochemical Cycles, 18
D. Read, J. Leake, J. Pérez‐Moreno (2004)
Mycorrhizal fungi as drivers of ecosystem processes in heathland and boreal forest biomesBotany, 82
A major uncertainty in predicting long-term ecosystem C balance is whether stimulation of net primary production will be sustained in future atmospheric CO 2 scenarios. Immobilization of nutrients (N in particular) in plant biomass and soil organic matter (SOM) provides negative feedbacks to plant growth and may lead to progressive N limitation (PNL) of plant response to CO 2 enrichment. Soil microbes mediate N availability to plants by controlling litter decomposition and N transformations as well as dominating biological N fixation. CO 2 -induced changes in C inputs, plant nutrient demand and water use efficiency often have interactive and contrasting effects on microbes and microbially mediated N processes. One critical question is whether CO 2 -induced N accumulation in plant biomass and SOM will result in N limitation of microbes and subsequently cause them to obtain N from alternative sources or to alter the ecosystem N balance. We reviewed the experimental results that examined elevated CO 2 effects on microbial parameters, focusing on those published since 2000. These results in general show that increased C inputs dominate the CO 2 impact on microbes, microbial activities and their subsequent controls over ecosystem N dynamics, potentially enhancing microbial N acquisition and ecosystem N retention. We reason that microbial mediation of N availability for plants under future CO 2 scenarios will strongly depend on the initial ecosystem N status, and the nature and magnitude of external N inputs. Consequently, microbial processes that exert critical controls over long-term N availability for plants would be ecosystem-specific. The challenge remains to quantify CO 2 -induced changes in these processes, and to extrapolate the results from short-term studies with step-up CO 2 increases to native ecosystems that are already experiencing gradual changes in the CO 2 concentration.
Plant and Soil – Springer Journals
Published: Nov 1, 2006
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.