Access the full text.
Sign up today, get DeepDyve free for 14 days.
Susan GOTIESMANl, M. Maurizi (1992)
Regulation by proteolysis: energy-dependent proteases and their targetsMicrobiological Reviews, 56
Klaus Früh, Young Yang, D. Arnold, Jeremy Chambers, Lin Wu, J. Waters, T. Spies, Per Peterson (1992)
Alternative exon usage and processing of the major histocompatibility complex-encoded proteasome subunits.The Journal of biological chemistry, 267 31
P. Zwickl, Anja Grziwa, Gabriela Puehler, Burkhardt Dahlmann, Friedrich Lottspeich, W. Baumeister (1992)
Primary structure of the Thermoplasma proteasome and its implications for the structure, function, and evolution of the multicatalytic proteinase.Biochemistry, 31 4
Kin-ya Akiyama, Kim-Ya Yokota, S. Kagawa, N. Shimbara, Tomohiro Tamura, H. Akioka, Hans Nothwang, Chiseko Noda, Keiji Tanaka, Akira Ichihara (1994)
cDNA cloning and interferon gamma down-regulation of proteasomal subunits X and Y.Science, 265 5176
R. Glynne, L. Kerr, I. Mockridge, Stephan Beck, A. Kelly, J. Trowsdale (1993)
The major histocompatibility complex‐encoded proteasome component LMP7: alternative first exons and post‐translational processingEuropean Journal of Immunology, 23
Maurizi Mr (1992)
Proteases and protein degradation in Escherichia coli.Cellular and Molecular Life Sciences, 48
A. Horovitz, E. Bochkareva, O. Kovalenko, A. Girshovich (1993)
Mutation Ala2-->Ser destabilizes intersubunit interactions in the molecular chaperone GroEL.Journal of molecular biology, 231 1
Anja Grziwa, W. Baumeister, B. Dahlmann, F. Kopp (1991)
Localization of subunits in proteasomes from Thermoplasma acidophilum by immunoelectron microscopyFEBS Letters, 290
M. Rechsteiner, L. Hoffman, W. Dubiel (1993)
The multicatalytic and 26 S proteases.The Journal of biological chemistry, 268 9
P. Zwickl, G. Pfeifer, Friedrich Lottspeich, Friedrich Kopp, Burkhardt Dahlmann, W. Baumeister (1990)
Electron microscopy and image analysis reveal common principles of organization in two large protein complexes: groEL-type proteins and proteasomes.Journal of structural biology, 103 3
M. Belich, R. Glynne, G. Senger, D. Sheer, J. Trowsdale (1994)
Proteasome components with reciprocal expression to that of the MHC-encoded LMP proteinsCurrent Biology, 4
J. Trowsdale (1993)
Genomic structure and function in the MHC.Trends in genetics : TIG, 9 4
U. Shinde, M. Inouye (1993)
Intramolecular chaperones and protein folding.Trends in biochemical sciences, 18 11
Coleen Martinez, John Monaco (1993)
Post-translational processing of a major histocompatibility complex-encoded proteasome subunit, LMP-2.Molecular immunology, 30 13
D. Baker, A. Shiau, D. Agard (1993)
The role of pro regions in protein folding.Current opinion in cell biology, 5 6
A. Goldberg (1992)
The mechanism and functions of ATP-dependent proteases in bacterial and animal cells.European journal of biochemistry, 203 1-2
Janet Thornton, B. Sibanda (1983)
Amino and carboxy-terminal regions in globular proteins.Journal of molecular biology, 167 2
A Hershko, A Ciechanover (1992)
The ubiquitin system for protein degradationA. Rev. Biochem., 61
T. Schauer, M. Nesper, M. Kehl, F. Lottspeich, A. Müller-Taubenberger, Günther Gerisch, W. Baumeister (1993)
Proteasomes from Dictyostelium discoideum: characterization of structure and function.Journal of structural biology, 111 2
A. Grziwa, S. Maack, G. Pühler, G. Wiegand, W. Baumeister, R. Jaenicke (1994)
Dissociation and reconstitution of the Thermoplasma proteasome.European journal of biochemistry, 223 3
S. Tabor, C. Richardson (1985)
A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes.Proceedings of the National Academy of Sciences of the United States of America, 82 4
F. Kopp, B. Dahlmann, K. Hendil (1993)
Evidence indicating that the human proteasome is a complex dimer.Journal of molecular biology, 229 1
A. Hershko, A. Ciechanover (1992)
The ubiquitin system for protein degradation.Annual review of biochemistry, 61
A Seelig, G Multhaup, B Pesold-Hurt, K Beyreuther, P-M Kloetzel (1993)
Drosophila proteasomes Dm25 subunit substitutes the mouse MC3 subunit in hybrid proteasomesJ. biol. Chem., 268
G. Pühler, F. Pitzer, P. Zwickl, W. Baumeister (1993)
Proteasomes: Multisubunit Proteinases common to Thermoplasma and EukaryotesSystematic and Applied Microbiology, 16
A. Horovitz, E. Bochkareva, A. Girshovich (1993)
The N terminus of the molecular chaperonin GroEL is a crucial structural element for its assembly.The Journal of biological chemistry, 268 14
P. Zwickl, F. Lottspeich, W. Baumeister (1992)
Expression of functional Thermoplasma acidophilum proteasomes in Escherichia coliFEBS Letters, 312
A. Goldberg, K. Rock (1992)
Proteolysis, proteasomes and antigen presentationNature, 357
A. Rivett (1993)
Proteasomes: multicatalytic proteinase complexes.The Biochemical journal, 291 ( Pt 1)
K. Tanaka, T. Tamura, T. Yoshimura, A. Ichihara (1992)
Proteasomes: protein and gene structures.The New biologist, 4 3
A. Seelig, G. Multhaup, B. Pesold-Hurt, K. Beyreuther, P. Kloetzel (1993)
Drosophila proteasome Dm25 subunit substitutes the mouse MC3 subunit in hybrid proteasomes. The N-terminal domain is essential for subunit incorporation.The Journal of biological chemistry, 268 34
B. Dahlmann, F. Kopp, L. Kuehn, B. Niedel, Günther Pfeifer, R. Hegerl, W. Baumeister (1989)
The multicatalytic proteinase (prosome) is ubiquitous from eukaryotes to archaebacteriaFEBS Letters, 251
John Monaco (1992)
A molecular model of MHC class-I-restricted antigen processing.Immunology today, 13 5
R. Hegerl, G. Pfeifer, G. Pühler, B. Dahlmann, W. Baumeister (1991)
The three‐dimensional structure of proteasomes from Thermoplasma acidophilum as determined by electron microscopy using random conical tiltingFEBS Letters, 283
H. Taguchi, Y. Makino, M. Yoshida (1994)
Monomeric chaperonin-60 and its 50-kDa fragment possess the ability to interact with non-native proteins, to suppress aggregation, and to promote protein folding.The Journal of biological chemistry, 269 11
G. Pühler, S. Weinkauf, L. Bachmann, Stefan Müller, Alfred Engel, R. Hegerl, W. Baumeister (1992)
Subunit stoichiometry and three‐dimensional arrangement in proteasomes from Thermoplasma acidophilum.The EMBO Journal, 11
S Frentzel (1993)
The major-histocompatibility-complex-encoded β-type proteasome subunits LMP2 and LMP7Eur. J. Biochem., 216
Stefan Frentzel, Brigitte Pesold-Hurt, A. Seelig, P. Kloetzel (1994)
20 S proteasomes are assembled via distinct precursor complexes. Processing of LMP2 and LMP7 proproteins takes place in 13-16 S preproteasome complexes.Journal of molecular biology, 236 4
S. Frentzel, I. Kuhn‐Hartmann, M. Gernold, P. Gött, A. Seelig, P. Kloetzel (1993)
The major‐histocompatibility‐complex‐encoded β‐type proteasome subunits LMP2 and LMP7FEBS Journal, 216
P. Zwickl, F. Lottspeich, B. Dahlmann, W. Baumeister (1991)
Cloning and sequencing of the gene encoding the large (α‐) subunit of the proteasome from Thermoplasma acidophilumFEBS Letters, 278
U. Laemmli (1970)
Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4Nature, 227
K. Lundberg, D. Shoemaker, M. Adams, J. Short, J. Sorge, E. Mathur (1991)
High-fidelity amplification using a thermostable DNA polymerase isolated from Pyrococcus furiosus.Gene, 108 1
S Frentzel, B Pesold-Hurt, A Seelig, P-M Kloetzel (1994)
20S proteasomes are assembled via distinct precursor complexesJ. molec. Biol., 236
T Clackson, D Guessow, PT Jones (1991)
PCR, A practical approach
Coexpression of both subunits of the Thermoplasma proteasome in Escherichia coli yields fully assembled and proteolytically active proteasomes. Post-translational processing of the β-subunit occurs in E. coli as it does in Thermoplasma. Coexpression of the α-subunit and the βΔpro-subunit, a mutant β-subunit lacking the propeptide, also yields fully assembled and active proteasomes. This indicates that the β-propeptide is not essential for the folding and assembly of Thermoplasma proteasomes. Separately expressed α-subunits assemble into heptameric rings indistinguishable from the terminal rings of a proteasome. Mutational analysis shows that the amino terminus, which is highly conserved in all proteasomal α-type proteins, is essential for assembly. In the absence of α-subunits the β-subunits are monomeric and post-translational processing of the β-propeptide does not occur.
Nature Structural & Molecular Biology – Springer Journals
Published: Nov 1, 1994
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.