Access the full text.
Sign up today, get DeepDyve free for 14 days.
Makvandi P. (2020)
110195Mater. Sci. Eng., C, 107
Cosman F. (2014)
2359Osteoporos Int., 25
Smith A. W. (2012)
31Acta Biomater., 8
Ahmadi M. T. (2008)
1J. Nanomater., 2008
Wambua P. (2003)
1259Compos. Sci. Technol., 63
Kang H. (2014)
4961Acta Biomater., 10
Dvir T. (2011)
13Nature Nanotech., 6
Pan R. (2021)
2457Polym. Chem., 12
Cai Y. (2008)
3775J. Mater. Chem., 18
Boere K. W. M. (2014)
2602Acta Biomater., 10
Croisier F. (2013)
780Eur. Polym. J., 49
Yu F. (2014)
5116Polym. Chem., 5
Zhou M. (2009)
2523Biomaterials, 30
Yue K. (2015)
254Biomaterials, 73
Hernlund E. (2013)
136Arch. Osteoporos., 8
Venkatesan N. (2019)
192Acta Biomater., 93
Eslami M. (2014)
399J. Biomater. Appl., 29
Shaheen S. M. (2002)
367J. Controlled Release, 81
Li Y. (2014)
56992RSC Adv., 4
Zhai Z. (2014)
6299Biomaterials, 35
Zhang K. (2017)
1701642Adv. Funct. Mater., 27
Booth F. W. (2012)
c110025
Nakayama H. (2010)
751J. Biomater. Appl., 24
Ko E. (2018)
7614ACS Appl. Mater. Interfaces, 10
Amrita A. A (2015)
180Carbohydr. Polym., 123
Ming J. (2015)
287Mater. Sci. Eng., C, 51
Rogers G. F. (2012)
323J. Craniofacial Surg., 23
Kuroiwa Y. (2019)
1247Int. Orthopaed. (SICOT), 43
Zhang W. (2018)
378Biomaterials, 181
Liu X. (2020)
6J. Biomed. Mater. Res., 109
Wang Z. (2019)
1901560Small, 15
Kisiday J. (2002)
9996Proc. Natl. Acad. Sci. USA, 99
Vo T. N. (2016)
1Biomaterials, 83
Wang X. (2007)
130J. Biomed. Mater. Res., 83
Blaeser A. (2016)
326Adv. Healthcare Mater., 5
Sathishkumar T. (2014)
454J. Reinf. Plast. Compos., 33
Kasper F. K. (2006)
823J. Biomed. Mater. Res., 78
Lancet, 366
Hoffman A. S. (2002)
3Adv. Drug Delivery Rev., 54
Horcajada P. (2010)
172Nature Mater., 9
Spicer C. D. (2020)
184Polym. Chem., 11
Peng X. (2000)
59Nature, 404
Mehra S. (2021)
2404Polym. Chem., 12
Li L. (2014)
2880Polym. Chem., 5
Liu M. (2017)
17014Bone Res., 5
Ghanaati S. (2014)
3557Acta Biomater., 10
Anderson J. M. (2011)
9463ACS Nano, 5
Zhang P. (2011)
80J. Membr. Sci., 379
Kasper F. K. (2006)
335J. Biomed. Mater. Res., 78
Ren B. (2018)
1257Int. J. Biol. Macromol., 118
Nejadnik M. R. (2012)
1316J. Biomed. Mater. Res., 100
Urruela‐Barrios R. (2019)
457Polymers, 11
Ikeda M. (2014)
511Nature Chem., 6
Li X. (2014)
1580J. Biomed. Mater. Res., 102
Jameela S. R. (1998)
17J. Controlled Release, 52
Horas U. (2003)
185J. Bone Joint Surg.‐Am., 85
Jansen E. J. P. (2005)
4423Biomaterials, 26
Pearl D. (2020)
2392J. Immunol., 204
Kasper F. K. (2005)
547J. Controlled Release, 107
Shepherd J. H. (2013)
176J. Biomed. Mater. Res., 101
Burdick J. A. (2012)
1269Nat. Commun., 3
Tao Y. (2018)
878Polym. Chem., 9
Yi H. (2016)
16050Bone Res., 4
Vijayavenkataraman S. (2018)
296Adv. Drug Delivery Rev., 132
Sun J. ‐ Y. (2012)
133Nature, 489
Mehrali M. (2017)
1603612Adv. Mater., 29
An G.‐H. (2017)
19714J. Mater. Chem. A, 5
Cernencu A. I. (2019)
12Carbohydr. Polym., 220
Wang D. (2018)
1803978Small, 14
Huang K. (2019)
2908ACS Appl. Mater. Interfaces, 11
Song J. (2003)
1236J. Am. Chem. Soc., 125
O'Brien F. J. (2011)
88Mater. Today, 14
Qiao Z. (2021)
120385Biomaterials, 266
Hasani‐Sadrabadi M. M. (2020)
eaay6853Sci. Transl. Med., 12
Li X. (2005)
47Polym. Bull., 54
Mathiowitz E. (1997)
410Nature, 386
Zheng A. (2018)
244Carbohydr. Polym., 199
Meka S. R. K. (2019)
565Mater. Sci. Eng., C, 94
Fu Q. (2013)
5461Adv. Funct. Mater., 23
Xavier M. (2021)
6909ACS Nano, 15
Wüst S. (2014)
630Acta Biomater., 10
Shim J.‐H. (2016)
014102Biofabrication, 8
Li X. (2005)
1034Polym. Int., 54
Yin J. (2020)
45891ACS Appl. Mater. Interfaces, 12
Jin Y. (2010)
1186Langmuir, 26
Behrendt P. (2020)
210Am. J. Sports Med., 48
Osorio D. A. (2019)
152Acta Biomater., 87
Zhang W. (2020)
116043Carbohydr. Polym., 236
Nkenke E. (2014)
S203Eur. J. Oral Implantol., 7
Peng Q. (2013)
5063Acta Biomater., 9
Loebel C. (2019)
883Nat. Mater., 18
Yoon S. (2018)
1800050Adv. Healthcare Mater., 7
Wu T. (2013)
3304J. Mater. Chem. B, 1
Xu J. (2015)
395Biomaterials, 37
Puperi D. S. (2016)
1546ACS Biomater. Sci. Eng., 2
Zheng Z. (2018)
1701026Adv. Healthcare Mater., 7
Nonoyama T. (2016)
6740Adv. Mater., 28
Seliktar D. (2012)
1124Science, 336
Malda J. (2013)
5011Adv. Mater., 25
Yang Y. (2016)
7178Adv. Mater., 28
Shane E. (2010)
2267J. Bone Miner. Res., 25
Wei H. (2006)
2028Biomaterials, 27
Sh Asran A. (2010)
868Polymer, 51
Tan H. (2009)
2499Biomaterials, 30
Wang Y. (2013)
341J. Controlled Release, 169
Butcher A. L. (2014)
564Trends Biotechnol., 32
Fang J. (2019)
503Acta Biomater., 88
Shi W. (2016)
247Acta Biomater., 45
Yu P. (2017)
507Carbohydr. Polym., 155
Li B. (2017)
1200Mater. Sci. Eng., C, 70
Huang D.‐M. (2009)
3645Biomaterials, 30
Ashton R. S. (2007)
5518Biomaterials, 28
Carluccio D. (2020)
346Acta Biomater., 103
Yan J. (2016)
274Mater. Sci. Eng., C, 63
Madhumathi K. (2009)
12Int. J. Biol. Macromol., 45
The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials.
Macromolecular Rapid Communications – Wiley
Published: Oct 1, 2021
Keywords: biomaterials; bone tissue regeneration; hydrogels; nanoparticles
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.