Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Hydrogel Composites with Different Dimensional Nanoparticles for Bone Regeneration

Hydrogel Composites with Different Dimensional Nanoparticles for Bone Regeneration The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Macromolecular Rapid Communications Wiley

Hydrogel Composites with Different Dimensional Nanoparticles for Bone Regeneration

Loading next page...
 
/lp/wiley/hydrogel-composites-with-different-dimensional-nanoparticles-for-bone-p28bcmoB9c

References (115)

  • Makvandi P. (2020)

    110195

    Mater. Sci. Eng., C, 107

  • Cosman F. (2014)

    2359

    Osteoporos Int., 25

  • Smith A. W. (2012)

    31

    Acta Biomater., 8

  • Ahmadi M. T. (2008)

    1

    J. Nanomater., 2008

  • Wambua P. (2003)

    1259

    Compos. Sci. Technol., 63

  • Kang H. (2014)

    4961

    Acta Biomater., 10

  • Dvir T. (2011)

    13

    Nature Nanotech., 6

  • Pan R. (2021)

    2457

    Polym. Chem., 12

  • Cai Y. (2008)

    3775

    J. Mater. Chem., 18

  • Boere K. W. M. (2014)

    2602

    Acta Biomater., 10

  • Croisier F. (2013)

    780

    Eur. Polym. J., 49

  • Yu F. (2014)

    5116

    Polym. Chem., 5

  • Zhou M. (2009)

    2523

    Biomaterials, 30

  • Yue K. (2015)

    254

    Biomaterials, 73

  • Hernlund E. (2013)

    136

    Arch. Osteoporos., 8

  • Venkatesan N. (2019)

    192

    Acta Biomater., 93

  • Eslami M. (2014)

    399

    J. Biomater. Appl., 29

  • Shaheen S. M. (2002)

    367

    J. Controlled Release, 81

  • Li Y. (2014)

    56992

    RSC Adv., 4

  • Zhai Z. (2014)

    6299

    Biomaterials, 35

  • Zhang K. (2017)

    1701642

    Adv. Funct. Mater., 27

  • Booth F. W. (2012)

    c110025

  • Nakayama H. (2010)

    751

    J. Biomater. Appl., 24

  • Ko E. (2018)

    7614

    ACS Appl. Mater. Interfaces, 10

  • Amrita A. A (2015)

    180

    Carbohydr. Polym., 123

  • Ming J. (2015)

    287

    Mater. Sci. Eng., C, 51

  • Rogers G. F. (2012)

    323

    J. Craniofacial Surg., 23

  • Kuroiwa Y. (2019)

    1247

    Int. Orthopaed. (SICOT), 43

  • Zhang W. (2018)

    378

    Biomaterials, 181

  • Liu X. (2020)

    6

    J. Biomed. Mater. Res., 109

  • Wang Z. (2019)

    1901560

    Small, 15

  • Kisiday J. (2002)

    9996

    Proc. Natl. Acad. Sci. USA, 99

  • Vo T. N. (2016)

    1

    Biomaterials, 83

  • Wang X. (2007)

    130

    J. Biomed. Mater. Res., 83

  • Blaeser A. (2016)

    326

    Adv. Healthcare Mater., 5

  • Sathishkumar T. (2014)

    454

    J. Reinf. Plast. Compos., 33

  • Kasper F. K. (2006)

    823

    J. Biomed. Mater. Res., 78

  • 1267

    Lancet, 366

  • Hoffman A. S. (2002)

    3

    Adv. Drug Delivery Rev., 54

  • Horcajada P. (2010)

    172

    Nature Mater., 9

  • Spicer C. D. (2020)

    184

    Polym. Chem., 11

  • Peng X. (2000)

    59

    Nature, 404

  • Mehra S. (2021)

    2404

    Polym. Chem., 12

  • Li L. (2014)

    2880

    Polym. Chem., 5

  • Liu M. (2017)

    17014

    Bone Res., 5

  • Ghanaati S. (2014)

    3557

    Acta Biomater., 10

  • Anderson J. M. (2011)

    9463

    ACS Nano, 5

  • Zhang P. (2011)

    80

    J. Membr. Sci., 379

  • Kasper F. K. (2006)

    335

    J. Biomed. Mater. Res., 78

  • Ren B. (2018)

    1257

    Int. J. Biol. Macromol., 118

  • Nejadnik M. R. (2012)

    1316

    J. Biomed. Mater. Res., 100

  • Urruela‐Barrios R. (2019)

    457

    Polymers, 11

  • Ikeda M. (2014)

    511

    Nature Chem., 6

  • Li X. (2014)

    1580

    J. Biomed. Mater. Res., 102

  • Jameela S. R. (1998)

    17

    J. Controlled Release, 52

  • Horas U. (2003)

    185

    J. Bone Joint Surg.‐Am., 85

  • Jansen E. J. P. (2005)

    4423

    Biomaterials, 26

  • Pearl D. (2020)

    2392

    J. Immunol., 204

  • Kasper F. K. (2005)

    547

    J. Controlled Release, 107

  • Shepherd J. H. (2013)

    176

    J. Biomed. Mater. Res., 101

  • Burdick J. A. (2012)

    1269

    Nat. Commun., 3

  • Tao Y. (2018)

    878

    Polym. Chem., 9

  • Yi H. (2016)

    16050

    Bone Res., 4

  • Vijayavenkataraman S. (2018)

    296

    Adv. Drug Delivery Rev., 132

  • Sun J. ‐ Y. (2012)

    133

    Nature, 489

  • Mehrali M. (2017)

    1603612

    Adv. Mater., 29

  • An G.‐H. (2017)

    19714

    J. Mater. Chem. A, 5

  • Cernencu A. I. (2019)

    12

    Carbohydr. Polym., 220

  • Wang D. (2018)

    1803978

    Small, 14

  • Huang K. (2019)

    2908

    ACS Appl. Mater. Interfaces, 11

  • Song J. (2003)

    1236

    J. Am. Chem. Soc., 125

  • O'Brien F. J. (2011)

    88

    Mater. Today, 14

  • Qiao Z. (2021)

    120385

    Biomaterials, 266

  • Hasani‐Sadrabadi M. M. (2020)

    eaay6853

    Sci. Transl. Med., 12

  • Li X. (2005)

    47

    Polym. Bull., 54

  • Mathiowitz E. (1997)

    410

    Nature, 386

  • Zheng A. (2018)

    244

    Carbohydr. Polym., 199

  • Meka S. R. K. (2019)

    565

    Mater. Sci. Eng., C, 94

  • Fu Q. (2013)

    5461

    Adv. Funct. Mater., 23

  • Xavier M. (2021)

    6909

    ACS Nano, 15

  • Wüst S. (2014)

    630

    Acta Biomater., 10

  • Shim J.‐H. (2016)

    014102

    Biofabrication, 8

  • Li X. (2005)

    1034

    Polym. Int., 54

  • Yin J. (2020)

    45891

    ACS Appl. Mater. Interfaces, 12

  • Jin Y. (2010)

    1186

    Langmuir, 26

  • Behrendt P. (2020)

    210

    Am. J. Sports Med., 48

  • Osorio D. A. (2019)

    152

    Acta Biomater., 87

  • Zhang W. (2020)

    116043

    Carbohydr. Polym., 236

  • Nkenke E. (2014)

    S203

    Eur. J. Oral Implantol., 7

  • Peng Q. (2013)

    5063

    Acta Biomater., 9

  • Loebel C. (2019)

    883

    Nat. Mater., 18

  • Yoon S. (2018)

    1800050

    Adv. Healthcare Mater., 7

  • Wu T. (2013)

    3304

    J. Mater. Chem. B, 1

  • Xu J. (2015)

    395

    Biomaterials, 37

  • Puperi D. S. (2016)

    1546

    ACS Biomater. Sci. Eng., 2

  • Zheng Z. (2018)

    1701026

    Adv. Healthcare Mater., 7

  • Nonoyama T. (2016)

    6740

    Adv. Mater., 28

  • Seliktar D. (2012)

    1124

    Science, 336

  • Malda J. (2013)

    5011

    Adv. Mater., 25

  • Yang Y. (2016)

    7178

    Adv. Mater., 28

  • Shane E. (2010)

    2267

    J. Bone Miner. Res., 25

  • Wei H. (2006)

    2028

    Biomaterials, 27

  • Sh Asran A. (2010)

    868

    Polymer, 51

  • Tan H. (2009)

    2499

    Biomaterials, 30

  • Wang Y. (2013)

    341

    J. Controlled Release, 169

  • Butcher A. L. (2014)

    564

    Trends Biotechnol., 32

  • Fang J. (2019)

    503

    Acta Biomater., 88

  • Shi W. (2016)

    247

    Acta Biomater., 45

  • Yu P. (2017)

    507

    Carbohydr. Polym., 155

  • Li B. (2017)

    1200

    Mater. Sci. Eng., C, 70

  • Huang D.‐M. (2009)

    3645

    Biomaterials, 30

  • Ashton R. S. (2007)

    5518

    Biomaterials, 28

  • Carluccio D. (2020)

    346

    Acta Biomater., 103

  • Yan J. (2016)

    274

    Mater. Sci. Eng., C, 63

  • Madhumathi K. (2009)

    12

    Int. J. Biol. Macromol., 45

Publisher
Wiley
Copyright
© 2021 Wiley‐VCH GmbH
ISSN
1022-1336
eISSN
1521-3927
DOI
10.1002/marc.202100362
Publisher site
See Article on Publisher Site

Abstract

The treatment of large segmental bone defects and complex types of fractures caused by trauma, inflammation, or tumor resection is still a challenge in the field of orthopedics. Various natural or synthetic biological materials used in clinical applications cannot fully replicate the structure and performance of raw bone. This highlights how to endow materials with multiple functions and biological properties, which is a problem that needs to be solved in practical applications. Hydrogels with outstanding biocompatibility, for their casting into any shape, size, or form, are suitable for different forms of bone defects. Therefore, they have been used in regenerative medicine more widely. In this review, versatile hydrogels are compounded with nanoparticles of different dimensions, and many desirable features of these materials in bone regeneration are introduced, including drug delivery, cell factor vehicle, cell scaffolds, which have potential in bone regeneration applications. The combination of hydrogels and nanoparticles of different dimensions encourages better filling of bone defect areas and has higher adaptability. This is due to the minimally invasive properties of the material and ability to match irregular defects. These biological characteristics make composite hydrogels with different dimensional nanoparticles become one of the most attractive options for bone regeneration materials.

Journal

Macromolecular Rapid CommunicationsWiley

Published: Oct 1, 2021

Keywords: biomaterials; bone tissue regeneration; hydrogels; nanoparticles

There are no references for this article.