Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Hemodynamic responses to amygdaloid stimulation in spontaneously hypertensive rats.

Hemodynamic responses to amygdaloid stimulation in spontaneously hypertensive rats. Our studies were done to determine 1) the regional hemodynamic effects of stimulating the central amygdaloid nucleus in conscious and anesthetized rats and 2) whether these effects differ between normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Flow was recorded with miniaturized pulsed Doppler probes placed on the renal and superior mesenteric arteries and the lower abdominal aorta. In rats anesthetized with Dialurethane, electrical stimulation elicited a depressor response accompanied by a decrease in hindquarter vascular resistance, with little or no change in heart rate or renal or mesenteric resistance in both SHR and WKY. By contrast, in conscious rats, stimulation was accompanied by a pressor response, tachycardia, and renal and mesenteric vasoconstriction in both groups. Hindquarter vascular resistance was unchanged in WKY and decreased at higher frequencies in SHR. There were no significant differences between SHR and WKY, whether anesthetized or awake, in hemodynamic responses to amygdaloid stimulation. Despite previous evidence indicating that the central amygdaloid nucleus contributes to the development of spontaneous hypertension, our results show that stimulation of this region does not elicit exaggerated cardiovascular responses in SHR. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The American journal of physiology Pubmed

Hemodynamic responses to amygdaloid stimulation in spontaneously hypertensive rats.

The American journal of physiology , Volume 245 (2): -274 – Sep 20, 1983

Hemodynamic responses to amygdaloid stimulation in spontaneously hypertensive rats.


Abstract

Our studies were done to determine 1) the regional hemodynamic effects of stimulating the central amygdaloid nucleus in conscious and anesthetized rats and 2) whether these effects differ between normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Flow was recorded with miniaturized pulsed Doppler probes placed on the renal and superior mesenteric arteries and the lower abdominal aorta. In rats anesthetized with Dialurethane, electrical stimulation elicited a depressor response accompanied by a decrease in hindquarter vascular resistance, with little or no change in heart rate or renal or mesenteric resistance in both SHR and WKY. By contrast, in conscious rats, stimulation was accompanied by a pressor response, tachycardia, and renal and mesenteric vasoconstriction in both groups. Hindquarter vascular resistance was unchanged in WKY and decreased at higher frequencies in SHR. There were no significant differences between SHR and WKY, whether anesthetized or awake, in hemodynamic responses to amygdaloid stimulation. Despite previous evidence indicating that the central amygdaloid nucleus contributes to the development of spontaneous hypertension, our results show that stimulation of this region does not elicit exaggerated cardiovascular responses in SHR.

Loading next page...
 
/lp/pubmed/hemodynamic-responses-to-amygdaloid-stimulation-in-spontaneously-ooDM9uXsxx

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0002-9513
DOI
10.1152/ajpregu.1983.245.2.R281
pmid
6881385

Abstract

Our studies were done to determine 1) the regional hemodynamic effects of stimulating the central amygdaloid nucleus in conscious and anesthetized rats and 2) whether these effects differ between normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Flow was recorded with miniaturized pulsed Doppler probes placed on the renal and superior mesenteric arteries and the lower abdominal aorta. In rats anesthetized with Dialurethane, electrical stimulation elicited a depressor response accompanied by a decrease in hindquarter vascular resistance, with little or no change in heart rate or renal or mesenteric resistance in both SHR and WKY. By contrast, in conscious rats, stimulation was accompanied by a pressor response, tachycardia, and renal and mesenteric vasoconstriction in both groups. Hindquarter vascular resistance was unchanged in WKY and decreased at higher frequencies in SHR. There were no significant differences between SHR and WKY, whether anesthetized or awake, in hemodynamic responses to amygdaloid stimulation. Despite previous evidence indicating that the central amygdaloid nucleus contributes to the development of spontaneous hypertension, our results show that stimulation of this region does not elicit exaggerated cardiovascular responses in SHR.

Journal

The American journal of physiologyPubmed

Published: Sep 20, 1983

There are no references for this article.