Access the full text.
Sign up today, get DeepDyve free for 14 days.
A. Kuwano, A. Mutirangura, B. Dittrich, K. Buiting, B. Horsthemke, S. Saitoh, N. Niikawa, S. Ledbetter, F. Greenberg, A. Chinault, D. Ledbetter (1992)
Molecular dissection of the Prader-Willi/Angelman syndrome region (15q11–13) by YAC cloning and FISH analysisHuman Molecular Genetics, 1
N. Dracopoli, P. O'Connell, Tami Elsner, J. Lalouel, Raymond White, Kenneth Buetow, Darryl Nishimura, Jeffrey Murray, Cynthia Helms, S. Mishra, H. Donis-Keller, Jeffrey Hall, Ming Lee, Mary-Claire King, John Attwood, N. Morton, Elizabeth Robson, M. Mahtani, Huntington Willard, Nicola Royle, Ila Patel, Alec Jeffreys, Vera Verga, Trefor Jenkins, James Weber, Anna Mitchell, Allen Bale (1991)
The CEPH consortium linkage map of human chromosome 1.Genomics, 9 4
A. Mutirangura, S. Ledbetter, A. Kuwano, A. Chinault, D. Ledbetter (1992)
Dinucleotide repeat polymorphism at the GABAA receptor β3 (GABRB3) locus in the Angelman/Prader— Willi region (AS/PWS) of chromosome 15Human Molecular Genetics, 1
S. Malcolm, J. Clayton-Smith, M. Nichols, M. Pembrey, J. Armour, A. Jeffreys, S. Robb, T. Webb (1991)
Uniparental paternal disomy in Angelman's syndromeThe Lancet, 337
A. Mutirangura, Frank Greenberg, M. Butler, Sue Malcolm, R. Nicholls, Aravinda Chakravarti, D. Ledbetter (1993)
Multiplex PCR of three dinucleotide repeats in the Prader-Willi/Angelman critical region (15q11-q13): molecular diagnosis and mechanism of uniparental disomy.Human molecular genetics, 2 2
Arabella Smith, L. Robson, A. Neumann, M. Mulcahy, V. Cbabros, Z. Deng, T. Woodage, R. Trent (1993)
Fluorescence in‐situ hybridisation and molecular studies used in the characterisation of a Robertsonian translocation (13q15q) in Prader‐Willi syndromeClinical Genetics, 43
J. Weissenbach, G. Gyapay, C. Dib, A. Vignal, J. Morissette, P. Millasseau, G. Vaysseix, M. Lathrop (1992)
A second-generation linkage map of the human genomeNature, 359
Robert Lindeman, S. Kouts, T. Woodage, A. Smith, R. Trent (1991)
Dinucleotide repeat polymorphism of D15S10 in the Prader-Willi chromosome region (PWCR).Nucleic acids research, 19 19
J. Hamabe, Y. Fukushima, N. Harada, K. Abe, N. Matsuo, T. Nagai, A. Yoshioka, H. Tonoki, R. Tsukino, N. Niikawa (1991)
Molecular study of the Prader-Willi syndrome: deletion, RFLP, and phenotype analyses of 50 patients.American journal of medical genetics, 41 1
C. Gregory, A. Kirkilionis, C. Greenberg, A. Chudley, J. Hamerton (1990)
Detection of molecular rearrangements in Prader-Willi syndrome patients by using genomic probes recognizing four loci within the PWCR.American journal of medical genetics, 35 4
T. Özçelik, S. Leff, W. Robinson, T. Donlon, M. Lalande, Elvira Sanjines, A. Schinzel, U. Francke (1992)
Small nuclear ribonucleoprotein polypeptide N (SNRPN), an expressed gene in the Prader–Willi syndrome critical regionNature Genetics, 2
C. Watkins, P. Bodfish, D. Warne, K. Nyberg, N. Spurr (1991)
Dinucleotide repeat polymorphism in the human alpha-cardiac actin gene, intron IV (ACTC), detected using the polymerase chain reaction.Nucleic acids research, 19 24
V. Holm, S. Cassidy, M. Butler, J. Hanchett, L. Greenswag, B. Whitman, F. Greenberg (1993)
Prader-Willi syndrome: consensus diagnostic criteria.Pediatrics, 91 2
J. Armour, S. Povey, S. Jeremiah, A. Jeffreys (1990)
Systematic cloning of human minisatellites from ordered array charomid libraries.Genomics, 8 3
K. Orstavik, S. Tangsrud, R. Kiil, I. Hansteen, J. Steen-johnsen, S. Cassidy, A. Martony, M. Anvret, N. Tommerup, K. Bröndum‐Nielsen (1992)
Prader-Willi syndrome in a brother and sister without cytogenetic or detectable molecular genetic abnormality at chromosome 15q11q13.American journal of medical genetics, 44 4
E. Rinchik, S. Bultman, B. Horsthemke, Seung-Taek Lee, K. Strunk, R. Spritz, K. Avidano, M. Jong, R. Nicholls (1993)
A gene for the mouse pink-eyed dilution locus and for human type II oculocutaneous albinismNature, 361
Stuart Schwartz, S. Max, S. Panny, M. Cohen, J. Optiz, James Reynolds (1985)
Deletions of proximal 15q and non-classical Prader-Willi syndrome phenotypes.American journal of medical genetics, 20 2
M. Polymeropoulos, Hua Xiao, D. Rath, Carl Merril (1990)
Dinucleotide repeat polymorphism at the human thrombospondin gene (THBS1).Nucleic acids research, 18 24
J. Clayton-Smith, T. Webb, S. Robb, I. Dijkstra, P. Willems, S. Lam, X. Cheng, M. Pembrey, S. Malcolm (1992)
Further evidence for dominant inheritance at the chromosome 15q11-13 locus in familial Angelman syndrome.American journal of medical genetics, 44 2
J. Weber, A. Kwitek, P. May (1990)
Dinucleotide repeat polymorphism at the D15S87 locus.Nucleic acids research, 18 15
CA Gregory, J Schwartz, AJ Kirkilionis, N Rudd, JL Hamerton (1991)
Somatic recombination rather than uniparental disomy suggested as another mechanism by which genetic imprinting may playa role in the etiology of Prader‐Willi syndrome, 88
D. Ledbetter, V. Riccardi, S. Airhart, R. Strobel, B. Keenan, J. Crawford (1981)
Deletions of chromosome 15 as a cause of the Prader-Willi syndrome.The New England journal of medicine, 304 6
A. Mutirangura, A. Kuwano, S. Ledbetter, A. Chinault, D. Ledbetter (1992)
Dinucleotide repeat polymorphism at the D15S11 locus in the Angelman/Prader-Willi region (AS/PWS) of chromosome 15.Human molecular genetics, 1 2
D. Warne, C. Watkins, P. Bodfish, K. Nyberg, Nigel Spurr (1991)
Tetranucleotide repeat polymorphism at the human beta-actin related pseudogene 2 (ACTBP2) detected using the polymerase chain reaction.Nucleic acids research, 19 24
J. Knoll, J. Knoll, R. Nicholls, R. Nicholls, R. Magenis, J. Graham, M. Lalande, S. Latt, S. Latt, J. Opitz, J. Reynolds (1989)
Angelman and Prader-Willi syndromes share a common chromosome 15 deletion but differ in parental origin of the deletion.American journal of medical genetics, 32 2
D. Rich, C. Witkowski, K. Summers, P. Tuinen, D. Ledbetter (1988)
Highly polymorphic locus D15S24 (CMW-1) maps to 15pter-q13. [HGM9 provisional no. D15S24].Nucleic acids research, 16 17
T. Hudson, M. Engelstein, Matthias Lee, Elizabeth Ho, M. Rubenfield, Christopher Adams, D. Housman, N. Dracopoli (1992)
Isolation and chromosomal assignment of 100 highly informative human simple sequence repeat polymorphisms.Genomics, 13 3
R. Nicholls, J. Knoll, M. Butler, Susan Karam, M. Lalande (1989)
Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndromeNature, 342
R. Nicholls, J. Knoll, K. Glatt, J. Hersh, Thomas Brewster, J. Graham, D. Wurster‐Hill, R. Wharton, S. Latt (1989)
Restriction fragment length polymorphisms within proximal 15q and their use in molecular cytogenetics and the Prader-Willi syndrome.American journal of medical genetics, 33 1
Wendy Robinson, Joseph Wagstaff, F. Bernasconi, Carlo Baccichetti, Lina, Artifoni, Emilio Franzoni, Lorraine Suslak, L. Shih, Hannah Aviv, A. Schinzel (1993)
Uniparental disomy explains the occurrence of the Angelman or Prader-Willi syndrome in patients with an additional small inv dup(15) chromosome.Journal of Medical Genetics, 30
J. Hamabe, N. Niikawa (1990)
StyI polymorphism at the D15S11 locus.Nucleic acids research, 18 18
B. Budowle, R. Chakraborty, A. Giusti, A. Eisenberg, R. Allen (1991)
Analysis of the VNTR locus D1S80 by the PCR followed by high-resolution PAGE.American journal of human genetics, 48 1
Prader-Willi syndrome
An extensive set of chromosome 15 DNA polymorphisms and densitometric analysis with four markers mapping to the Prader–Willi chromosome region (PWCR) of chromosome 15 have been used to characterize a cohort of 30 subjects with classical Prader–Willi syndrome (PWS). Molecular analysis enabled the classification of the PWS subjects into four groups: (A) 18 subjects (60%) had deletions of paternal 15q11–13 involving a common set of DNA markers. Two subjects had differently sized deletions, one larger and one smaller than the other cases. (B) Eight (27%) had maternal uniparental disomy for chromosome 15. (C) One (3%) had a marker chromosome carrying an extra copy of the PWCR. The marker chromosome was demonstrated to be of paternal origin and the two intact chromosomes were maternally derived. This case represents an apparent exception to the generally held view that PWS is associated with an absence of paternally inherited gene(s) located in the PWCR. (D) The remaining three cases (10%) had none of the above abnormalities. This last subgroup of patients has not previously been well characterized but could represent limited deletions not detectable with the markers used or abnormalities in the imprinting process. These cases represent potentially valuable resources to elucidate more precisely the fundamental disorders responsible for PWS. © 1994 Wiley‐Liss, Inc.
American Journal of Medical Genetics Part A – Wiley
Published: Mar 15, 1995
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.