Access the full text.
Sign up today, get DeepDyve free for 14 days.
V. Joukov, K. Pajusola, A. Kaipainen, D. Chilov, I. Lahtinen, E. Kukk, O. Saksela, N. Kalkkinen, K. Alitalo (1996)
A novel vascular endothelial growth factor, VEGF‐C, is a ligand for the Flt4 (VEGFR‐3) and KDR (VEGFR‐2) receptor tyrosine kinases, 15
B. Olofsson, E. Korpelainen, M. Pepper, S. Mandriota, Vijay Kumar, K. Aase, Y. Gunji, K. Alitalo, U. Eriksson (1998)
VEGF-B binds to VEGFR-1 and regulates plasminogen activator activity in endothelial cellsMolecular Biology of the Cell, 9
E. Abel (1996)
Clinical applications of research on angiogenesisJournal of The American Academy of Dermatology, 35
G. Christofori (1997)
Tumour Angiogenesis
(1993)
The FLT 4
G. H. Fong, J. Rossant, M. Gertsenstein, M. L. Breitman (1995)
Role of the Flt‐1 receptor tyrosine kinase in regulating the assembly of vascular endothelium, 376
M. Pepper, R. Montesano (1990)
Proteolytic balance and capillary morphogenesis.Cell differentiation and development : the official journal of the International Society of Developmental Biologists, 32 3
T. Asahara, C. Bauters, L. P. Zheng, S. Takeshita, S. Bunting, N. Ferrara, J. F. Symes, J. M. Isner (1995)
Synergistic effect of vascular endothelial growth factor and basic fibroblast growth factor on angiogenesis in vivo, 92
F. Sanger, S. Nicklen, A. Coulson (1977)
DNA sequencing with chain-terminating inhibitors.Proceedings of the National Academy of Sciences of the United States of America, 74 12
S. Mandriota, M. Pepper (1997)
Vascular endothelial growth factor-induced in vitro angiogenesis and plasminogen activator expression are dependent on endogenous basic fibroblast growth factor.Journal of cell science, 110 ( Pt 18)
(1996)
Urokinase receptorRole of the Flt - 1 receptor tyrosine kinase in regulating the assembly antagonists inhibit angiogenesis and primary tumor growth in syn - of vascular endothelium
T. Quinn, K. Peters, C. Vries, Napoleone Ferrarat, L. Williams (1993)
Fetal liver kinase 1 is a receptor for vascular endothelial growth factor and is selectively expressed in vascular endothelium.Proceedings of the National Academy of Sciences of the United States of America, 90 16
(1997)
The biology of vascular endo - pression are dependent on endogenous basic fibroblast growth fac - thelial growth factor
F. Galland, A. Karamysheva, M. J. Pebusque, J. P. Borg, R. Rottapel, P. Dubreuil, O. Rosnet, D. Birnbaum (1993)
The FLT4 gene encodes a transmembrane tyrosine kinase related to the vascular endothelial growth factor receptor, 8
J. Kandel, E. Bossy‐Wetzel, F. Radvanyl, M. Klagsbrun, J. Folkman, D. Hanahan (1991)
Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma, 66
(1996)
A novel vascular endothelial growth factor , VEGF - C , is a ligand for the Flt 4 to the bedside
E. Kukk, A. Lymboussaki, S. Taira, A. Kaipainen, M. Jeltsch, V. Joukov, K. Alitalo (1996)
VEGF‐C receptor binding and pattern of expression with VEGFR‐3 suggests a role in lymphatic vascular development, 122
D. Hu, T. Fan (1995)
Suppression of VEGF‐induced angiogenesis by the protein tyrosine kinase inhibitor, lavendustin ABritish Journal of Pharmacology, 114
B. Millauer, M. P. Longhi, K. H. Plate, L. K. Shawver, W. Risau, A. Ullrich, L. M. Strawn (1996)
Dominant negative inhibition of Flk‐1 suppresses the growth of many tumor types in vivo, 56
R. D. Leek, A. L. Harris, C. E. Lewis (1994)
Cytokine networks in solid human tumors: Regulation of angiogenesis, 56
M. Pepper, N. Ferrara, L. Orci, R. Montesano (1992)
Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro.Biochemical and biophysical research communications, 189 2
(1994)
In vitro angiogenic and proteolytic properties of bovine lymphatic multifunctional
H. Finnerty, K. Kelleher, G. E. Morris, K. Bean, D. M. Merberg, R. Kriz, J. C. Morris, H. Sookdeo, K. J. Turner, C. R. Wood (1993)
Molecular cloning of murine FLT and FLT4, 8
M. Jeltsch, A. Kaipainen, X. Joukov Meng, M. Lakso, H. Rauvala, M. Swartz, D. Fukumura, R. K. Jain, K. Alitalo (1997)
Hyperplasia of lymphatic vessels in VEGF‐C transgenic mice, 276
S. J. Mandriota, G. Seghezzi, J. D. Vassalli, N. Ferrara, S. Wasi, R. Mazzieri, P. Mignatti, M. S. Pepper (1995)
Vascular endothelial growth factor increases urokinase receptor expression in vascular endothelial cells, 270
(1995)
Expression of plasminogen activator inhibitor type 1 by human prostate carcinoma cells inhibits primarysion on migrating endothelial cells
(1998)
Regulation of vascular endo - Microbiol
H. Y. Min, L. V. Doyle, C. R. Vitt, L. Zandonella, J. R. Stratton‐Thomas, M. A. Shuman, S. Rosenberg (1996)
Urokinase receptor antagonists inhibit angiogenesis and primary tumor growth in syngeneic mice, 56
R. Fisher, E. K. Waller, G. Grossi, D. Thompson, R. Tizard, W. D. Schleuning (1985)
Isolation and characterization of the human tissue‐type plasminogen activator structural gene including its 5′ flanking region, 260
M. Pepper, J. Vassalli, L. Orci, R. Montesano (1993)
Biphasic effect of transforming growth factor-beta 1 on in vitro angiogenesis.Experimental cell research, 204 2
(1984)
comitant secretion of prourokinase and of a plasminogen activator - and c - met expression in the rat mammary gland during pregnancy , lactation and involution
J. Lee, A. Gray, J. Yuan, S. M. Luoh, H. Avraham, W. I. Wood (1996)
Vascular endothelial growth factor‐related protein: A ligand and specific activator of the tyrosine kinase receptor FLT4, 93
N. Ferrara, T. Davis‐Smyth (1997)
The biology of vascular endothelial growth factor, 18
M. B. Furie, E. B. Cramer, B. L. Naprstek, S. C. Silverstein (1984)
Cultured endothelial cell monolayers that restrict the transendothelial passage of macromolecules and electrical current, 98
A. Kaipainen, J. Korhonen, T. Mustonen, V. Hinsbergh, G. Fang, D. Dumont, M. Breitman, K. Alitalo (1995)
Expression of the fms-like tyrosine kinase 4 gene becomes restricted to lymphatic endothelium during development.Proceedings of the National Academy of Sciences of the United States of America, 92
B. Millauer, S. Wizigmann-Voos, H. Schnürch, R. Martinez, N. Møller, W. Risau, A. Ullrich (1993)
High affinity VEGF binding and developmental expression suggest Flk-1 as a major regulator of vasculogenesis and angiogenesisCell, 72
, andlary endothelial cells within collagen gels
F. Goto, K. Goto, K. Weindel, J. Folkman (1993)
Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the proliferation and cord formation of bovine capillary endothelial cells within collagen gels.Laboratory investigation; a journal of technical methods and pathology, 69 5
R. Montesano, L. Orci (1985)
Tumor‐promoting phorbol esters induce angiogenesis in vitro, 42
(1997)
endothelial growth factor genes VEGF - B and VEGF - C localize toHyperplasia of lymphatic vessels in VEGF - C transgenic mice . Sci - chromosomes 11 q 13 and 4 q 34 , respectively
F. Shalaby, J. Rossant, T. Yamaguchi, M. Gertsenstein, Xiang-fu Wu, M. Breitman, A. Schuh (1995)
Failure of blood-island formation and vasculogenesis in Flk-1-deficient miceNature, 376
R. Montesano, J. Vassalli, A. Baird, R. Guillemin, L. Orci (1986)
Basic fibroblast growth factor induces angiogenesis in vitro.Proceedings of the National Academy of Sciences of the United States of America, 83 19
V. Joukov, T. Sorsa, V. Kumar, L. Claesson‐Welsh, Y. Cao, O. Saksela, N. Kalkkinen, K. Alitalo (1997)
Proteolytic processing regulates receptor specificity and activity of VEGF‐C, 16
B. Millauer, L. K. Shawver, K. H. Plate, W. Risau, A. Ullrich (1994)
Glioblastoma growth inhibited in vivo by a dominant negative Flk‐1 mutant, 367
(1985)
Isolation and characterization of the hu - ( 1994 ) Glioblastoma growth inhibited in vivo by a dominant nega - man tissue - type plasminogen activator structural gene including tive Flk - 1 mutant
K. Thomas (1996)
Vascular Endothelial Growth Factor, a Potent and Selective Angiogenic Agent (*)The Journal of Biological Chemistry, 271
S. J. Mandriota, P. A. Menoud, M. S. Pepper (1996)
Transforming growth factor‐1 downregulates vascular endothelial growth factor receptor‐2/flk‐1 expression in vascular endothelial cells, 271
H. F. Dvorak, L. F. Brown, M. Detmar, A. M. Dvorak (1995)
Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis, 146
Vassalli , thelial growth factor receptor - 2 ( Flk - 1 ) expression in vascular endothelial cells
R. Flaumenhaft, D. B. Rifkin (1992)
The extracellular regulation of growth factor action, 3
D. Tessier, David Thomas, H. Khouri, France Laliberié, T. Vernet (1991)
Enhanced secretion from insect cells of a foreign protein fused to the honeybee melittin signal peptide.Gene, 98 2
C. Nathan, M. Sporn (1991)
Cytokines in contextThe Journal of Cell Biology, 113
(1996)
Dominant negative inhibitionof growth factor action
M. Klagsbrun, P. A. D'Amore (1991)
Regulators of angiogenesis, 53
M. Pepper, R. Montesano, S. Mandriota, L. Orci, J. Vassalli (1996)
Angiogenesis: a paradigm for balanced extracellular proteolysis during cell migration and morphogenesis.Enzyme & protein, 49 1-3
(1996)
VEGF - C receptor binding and pattern LITERATURE CITED of expression with VEGFR - 3 suggests a role in lymphatic vascular
M. G. Achen, M. Jeltsch, E. Kukk, T. Mäkinen, A. Vitali, A. F. Wilks, K. Alitalo, S. A. Stacker (1998)
Vascular endothelial growth factor D (VEGF‐D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4), 95
T. Mustonen, K. Alitalo (1995)
Endothelial receptor tyrosine kinases involved in angiogenesisThe Journal of Cell Biology, 129
J. Krätzschmar, B. Haendler, S. Kojima, D. Rifkin, W. Schleuning (1993)
Bovine urokinase-type plasminogen activator and its receptor: cloning and induction by retinoic acid.Gene, 125 2
Transforming growth factor beta - 1 modulates basic fibroblast tein
Vascular endothelial growth factor‐C (VEGF‐C) is a recently characterized member of the VEGF family of angiogenic polypeptides. We demonstrate here that VEGF‐C is angiogenic in vitro when added to bovine aortic or lymphatic endothelial (BAE and BLE) cells but has little or no effect on bovine microvascular endothelial (BME) cells. As reported previously for VEGF, VEGF‐C and basic fibroblast growth factor (bFGF) induced a synergistic in vitro angiogenic response in all three cells lines. Unexpectedly, VEGF and VEGF‐C also synergized in the in vitro angiogenic response when assessed on BAE cells. Characterization of VEGF receptor (VEGFR) expression revealed that BME, BAE, and BLE cell lines express VEGFR‐1 and ‐2, whereas of the three cell lines assessed, only BAE cells express VEGFR‐3. We also demonstrate that VEGF‐C increases plasminogen activator (PA) activity in the three bovine endothelial cell lines and that this is accompanied by a concomitant increase in PA inhibitor‐1. Addition of α2‐antiplasmin to BME cells co‐treated with bFGF and VEGF‐C partially inhibited collagen gel invasion. These results demonstrate, first, that by acting in concert with bFGF or VEGF, VEGF‐C has a potent synergistic effect on the induction of angiogenesis in vitro and, second, that like VEGF and bFGF, VEGF‐C is capable of altering endothelial cell extracellular proteolytic activity. These observations also highlight the notion of context, i.e., that the activity of an angiogenesis‐regulating cytokine depends on the presence and concentration of other cytokines in the pericellular environment of the responding endothelial cell. J. Cell. Physiol. 177:439–452, 1998. © 1998 Wiley‐Liss, Inc.
Journal of Cellular Physiology – Wiley
Published: Jan 1, 1998
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.