Access the full text.
Sign up today, get DeepDyve free for 14 days.
U. Domańska, Ewa Bogel-Łukasik, Rafał Bogel-Łukasik (2003)
1‐Octanol/Water Partition Coefficients of 1Alkyl‐3‐methylimidazolium ChlorideChemistry: A European Journal, 9
E. Overton
Studien über die Narkose : zugleich ein Beitrag zur allgemeinen Pharmakologie
M. Faust, R. Altenburger, T. Backhaus, H. Blanck, W. Boedeker, Paola Gramatica, V. Hamer, M. Scholze, Marco Vighi, L. Grimme (2001)
Predicting the joint algal toxicity of multi-component s-triazine mixtures at low-effect concentrations of individual toxicants.Aquatic toxicology, 56 1
B. Antkowiak (2001)
How do general anaesthetics work?Naturwissenschaften, 88
A. Latała, P. Stepnowski, M. Nędzi, W. Mrozik (2005)
Marine toxicity assessment of imidazolium ionic liquids: acute effects on the Baltic algae Oocystis submarina and Cyclotella meneghiniana.Aquatic toxicology, 73 1
P. Stepnowski, W. Mrozik, Joanna Nichthauser (2007)
Adsorption of alkylimidazolium and alkylpyridinium ionic liquids onto natural soils.Environmental science & technology, 41 2
P. Stepnowski (2005)
Preliminary Assessment of the Sorption of some Alkyl Imidazolium Cations as used in Ionic Liquids to Soils and SedimentsAustralian Journal of Chemistry, 58
(2007)
PAPER www.rsc.org/greenchem | Green Chemistry Effects
B. Jastorff, R. Störmann, J. Ranke, K. Mölter, F. Stock, B. Oberheitmann, Wolfgang Hoffmann, J. Hoffmann, M. Nüchter, B. Ondruschka, J. Filser (2003)
How hazardous are ionic liquids? Structure–activity relationships and biological testing as important elements for sustainability evaluationThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002.Green Chemistry, 5
Sang-Mok Lee, Woo-Jin Chang, Ahrom Choi, Y. Koo (2005)
Influence of ionic liquids on the growth ofEscherichia coliKorean Journal of Chemical Engineering, 22
F. Endres (2002)
Ionic liquids: solvents for the electrodeposition of metals and semiconductors.Chemphyschem : a European journal of chemical physics and physical chemistry, 3 2
B. Escher, R. Schwarzenbach (2002)
Mechanistic studies on baseline toxicity and uncoupling of organic compounds as a basis for modeling effective membrane concentrations in aquatic organismsAquatic Sciences, 64
T. Welton (2004)
Ionic liquids in catalysisCoordination Chemistry Reviews, 248
P. Anastas, J. Zimmerman (2003)
Design Through the 12 Principles of Green EngineeringIEEE Engineering Management Review, 35
J. Ranke, K. Mölter, F. Stock, U. Bottin-Weber, J. Poczobutt, J. Hoffmann, B. Ondruschka, J. Filser, B. Jastorff (2004)
Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays.Ecotoxicology and environmental safety, 58 3
J. Ranke, A. Müller, U. Bottin-Weber, F. Stock, S. Stolte, Jürgen Arning, R. Störmann, B. Jastorff (2007)
Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity.Ecotoxicology and environmental safety, 67 3
R. Altenburger, W. Bödeker, M. Faust, L. Grimme (1990)
Evaluation of the isobologram method for the assessment of mixtures of chemicals. Combination effect studies with pesticides in algal biotests.Ecotoxicology and environmental safety, 20 1
A. Wells, V. Coombe (2006)
On the Freshwater Ecotoxicity and Biodegradation Properties of Some Common Ionic LiquidsOrganic Process Research & Development, 10
D. Gorman-Lewis, J. Fein (2004)
Experimental study of the adsorption of an ionic liquid onto bacterial and mineral surfaces.Environmental science & technology, 38 8
P. Stepnowski, A. Składanowski, A. Ludwiczak, E. Laczynska (2004)
Evaluating the cytotoxicity of ionic liquids using human cell line HeLaHuman and Experimental Toxicology, 23
J. Pernak, Joanna Kalewska, Hanna Ksycińska, Jacek Cybulski (2001)
Synthesis and anti-microbial activities of some pyridinium salts with alkoxymethyl hydrophobic group.European journal of medicinal chemistry, 36 11-12
K. Docherty, J. Dixon, Charles Jr (2007)
Biodegradability of imidazolium and pyridinium ionic liquids by an activated sludge microbial communityBiodegradation, 18
J. Huddleston, A. Visser, W. Reichert, H. Willauer, G. Broker, R. Rogers (2001)
Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cationGreen Chemistry, 3
J. Pernak, Jarostaw Rogoza, I. Mirska (2001)
Synthesis and antimicrobial activities of new pyridinium and benzimidazolium chlorides.European journal of medicinal chemistry, 36 4
C. Pretti, C. Chiappe, Daniela Pieraccini, M. Gregori, F. Abramo, G. Monni, L. Intorre (2006)
Acute toxicity of ionic liquids to the zebrafish (Danio rerio)Green Chemistry, 8
G. Baker, Sheila Baker (2005)
A Simple Colorimetric Assay of Ionic Liquid Hydrolytic StabilityAustralian Journal of Chemistry, 58
Randall Bernot, Michael Brueseke, M. Evans‐White, G. Lamberti (2005)
Acute and chronic toxicity of imidazolium‐based ionic liquids on Daphnia magnaEnvironmental Toxicology and Chemistry, 24
J. Ranke, M. Cox, A. Müller, C. Schmidt, D. Beyersmann (2006)
Sorption, cellular distribution, and cytotoxicity of imidazolium ionic liquids in mammalian cells – influence of lipophilicityToxicological & Environmental Chemistry, 88
R. Swatloski, J. Holbrey, R. Rogers (2003)
Ionic liquids are not always green: hydrolysis of 1-butyl-3-methylimidazolium hexafluorophosphateGreen Chemistry, 5
R. Swatloski, J. Holbrey, Shermeen Memon, G. Caldwell, Kim Caldwell, R. Rogers (2004)
Using Caenorhabditis elegans to probe toxicity of 1-alkyl-3-methylimidazolium chloride based ionic liquids.Chemical communications, 6
H. Meyer (1899)
Zur Theorie der AlkoholnarkoseArchiv für experimentelle Pathologie und Pharmakologie, 42
N. Gathergood, P. Scammells, M. Garcia (2006)
Biodegradable ionic liquids : Part III. The first readily biodegradable ionic liquidsGreen Chemistry, 8
B. Jastorff, K. Mölter, P. Behrend, U. Bottin-Weber, J. Filser, A. Heimers, B. Ondruschka, J. Ranke, M. Schaefer, H. Schröder, A. Stark, P. Stepnowski, F. Stock, R. Störmann, S. Stolte, U. Welz-Biermann, Susan Ziegert, J. Thöming (2005)
Progress in evaluation of risk potential of ionic liquids—basis for an eco-design of sustainable productsGreen Chemistry, 7
N. Shvedene, S. Borovskaya, V. Sviridov, Erika Ismailova, I. Pletnev (2005)
Measuring the solubilities of ionic liquids in water using ion-selective electrodesAnalytical and Bioanalytical Chemistry, 381
J. Anthony, and Maginn, J. Brennecke (2001)
Solution Thermodynamics of Imidazolium-Based Ionic Liquids and WaterJournal of Physical Chemistry B, 105
A. Plakhotnyk, L. Ernst, R. Schmutzler (2005)
Hydrolysis in the system LiPF6—propylene carbonate—dimethyl carbonate—H2OJournal of Fluorine Chemistry, 126
K. Docherty, C. Kulpa (2005)
Toxicity and antimicrobial activity of imidazolium and pyridinium ionic liquidsGreen Chemistry, 7
M. Faust, R. Altenburger, T. Backhaus, H. Blanck, W. Boedeker, Paola Gramatica, V. Hamer, M. Scholze, Marco Vighi, L. Grimme (2003)
Joint algal toxicity of 16 dissimilarly acting chemicals is predictable by the concept of independent action.Aquatic toxicology, 63 1
M. Garcia, N. Gathergood, P. Scammells (2005)
Biodegradable ionic liquids Part II. Effect of the anion and toxicologyGreen Chemistry, 7
F. Stock, J. Hoffmann, J. Ranke, R. Störmann, B. Ondruschka, B. Jastorff (2004)
Effects of ionic liquids on the acetylcholinesterase – a structure–activity relationship considerationGreen Chemistry, 6
C. Doose, J. Ranke, F. Stock, U. Bottin-Weber, B. Jastorff (2004)
Structure–activity relationships of pyrithiones – IPC-81 toxicity tests with the antifouling biocide zinc pyrithione and structural analogsGreen Chemistry, 6
Hua Zhao (2005)
Effect of ions and other compatible solutes on enzyme activity, and its implication for biocatalysis using ionic liquidsJournal of Molecular Catalysis B-enzymatic, 37
Laurie Ropel, Lionel Belveze, S. Aki, M. Stadtherr, J. Brennecke (2005)
Octanol–water partition coefficients of imidazolium-based ionic liquidsGreen Chemistry, 7
K. Kaiser, V. Palabrica (1991)
Photobacterium phosphoreum Toxicity Data Index, 26
J. Ranke, S. Stolte, R. Störmann, Jürgen Arning, B. Jastorff (2007)
Design of sustainable chemical products--the example of ionic liquids.Chemical reviews, 107 6
P. Stepnowski, P. Storoniak (2005)
Lipophilicity and Metabolic Route Prediction of Imidazolium Ionic Liquids * (6 pp)Environmental Science and Pollution Research, 12
Constanza Villagrán, Maggel Deetlefs, W. Pitner, C. Hardacre (2004)
Quantification of halide in ionic liquids using ion chromatography.Analytical chemistry, 76 7
T. Backhaus, R. Altenburger, W. Boedeker, M. Faust, M. Scholze, L. Grimme (2000)
Predictability of the toxicity of a multiple mixture of dissimilarly acting chemicals to Vibrio fischeriEnvironmental Toxicology and Chemistry, 19
J. Pernak, Kinga Sobaszkiewicz, I. Mirska (2003)
Anti-microbial activities of ionic liquidsGreen Chemistry, 5
D. Orvos, D. Versteeg, Josef Inauen, M. Capdevielle, A. Rothenstein, V. Cunningham (2002)
Aquatic toxicity of triclosanEnvironmental Toxicology and Chemistry, 21
To enlarge the restricted knowledge about the hazard potentials of ionic liquids to man and the environment we have concentrated on analysing systematically the anion effect of six different anion moieties (Cl−, BF4−, (CF3SO2)2N−, (CF3)2N−, octylsulfate and bis(1,2-benzenediolato)borate) and the influence of the side chain length at the cation on (eco)toxicity. For our investigations, we used the flexible (eco)toxicological test battery considering aquatical and terrestrial compartments as well as different trophic levels including enzymes (acetylcholinesterase), mammalian cells (IPC-81), luminescent marine bacteria (Vibrio fischeri), limnic unicellular green algae (Scenedesmus vacuolatus), wheat (Triticum aestivum), cress (Lepidium sativum), duckweed (Lemna minor) and a soil invertebrate (the spring tail Folsomia candida). In general, the side chain effect was found consistently in all used test systems from the molecular up to the organismic level. Such a consistent response of the different test systems could not be confirmed for the tested anion moieties. Furthermore, in most of the investigated test systems the anion effects are not as distinct as the demonstrated side chain length effect. Nevertheless, for (CF3SO2)2N− a clear (eco)toxicological hazard potential is evident. Thus, the strategy to check toxicities within a flexible (eco)toxicological test battery has been proven to be effective for uncovering hazard potentials of ionic liquids.
Green Chemistry – Royal Society of Chemistry
Published: Oct 30, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.