Access the full text.
Sign up today, get DeepDyve free for 14 days.
Hanns-Dieter Amberger, H. Reddmann, T. Mueller, W. Evans (2010)
Parametric Analysis of the Crystal Field Splitting Pattern of Pr(η5-C5Me5)3†Organometallics, 29
M. Gonidec, F. Luis, A. Vílchez, J. Esquena, D. Amabilino, J. Veciana (2010)
A liquid-crystalline single-molecule magnet with variable magnetic properties.Angewandte Chemie, 49 9
H. Schilder, H. Lueken (2004)
Computerized magnetic studies on d, f, d–d, f–f, and d–S, f–S systems under varying ligand and magnetic fieldsJournal of Magnetism and Magnetic Materials, 281
(2009)
Magnetic memory of a single-molecule quantum magnet wired to a gold surface.Nature materials, 8 3
C. Milios, A. Vinslava, W. Wernsdorfer, S. Moggach, S. Parsons, S. Perlepes, G. Christou, E. Brechin (2007)
A record anisotropy barrier for a single-molecule magnet.Journal of the American Chemical Society, 129 10
A. Ardavan, Olivier Rival, J. Morton, S. Blundell, A. Tyryshkin, G. Timco, R. Winpenny (2006)
Will spin-relaxation times in molecular magnets permit quantum information processing?Physical review letters, 98 5
P. Stamp, A. Gaita-Ariño (2008)
Spin-based quantum computers made by chemistry: hows and whysJournal of Materials Chemistry, 19
Jeffrey Rinehart, M. Fang, W. Evans, J. Long (2011)
A N2(3-) radical-bridged terbium complex exhibiting magnetic hysteresis at 14 K.Journal of the American Chemical Society, 133 36
Jeffrey Rinehart, M. Fang, W. Evans, J. Long (2011)
Strong exchange and magnetic blocking in N 2 3 2-radical-bridged lanthanide complexes
N. Ishikawa, Miki Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu (2004)
Mononuclear Lanthanide Complexes with a Long Magnetization Relaxation Time at High Temperatures: A New Category of Magnets at the Single-Molecular LevelJournal of Physical Chemistry B, 108
Jean Becquerel (1929)
Einleitung in eine Theorie der magneto-optischen Erscheinungen in KristallenZeitschrift für Physik, 58
Po‐Heng Lin, T. Burchell, L. Ungur, L. Chibotaru, W. Wernsdorfer, M. Murugesu (2009)
A polynuclear lanthanide single-molecule magnet with a record anisotropic barrier.Angewandte Chemie, 48 50
J. Sievers (1982)
Asphericity of 4f-shells in their Hund's rule ground statesZeitschrift für Physik B Condensed Matter, 45
M. Leone, A. Paoletti, N. Robotti (2004)
A Simultaneous Discovery: The Case of Johannes Stark and Antonino Lo SurdoPhysics in Perspective, 6
L. Bogani, W. Wernsdorfer (2008)
Molecular spintronics using single-molecule magnets.Nature materials, 7 3
M. Leuenberger, D. Loss (2000)
Quantum computing in molecular magnetsNature, 410
R. Orbach (1961)
Spin-lattice relaxation in rare-earth saltsProceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 264
Yun-Nan Guo, Gongfeng Xu, P. Gamez, Lang Zhao, Shuang-Yan Lin, Ruiping Deng, Jinkui Tang, Hong‐Jie Zhang (2010)
Two-step relaxation in a linear tetranuclear dysprosium(III) aggregate showing single-molecule magnet behavior.Journal of the American Chemical Society, 132 25
D. Karraker, J. Stone, E. Jones, Norman Edelstein (1970)
Bis(cyclooctatetraenyl)neptunium(IV) and bis(cyclooctatetraenyl)plutonium(IV)Journal of the American Chemical Society, 92
S. Jank, Hanns-Dieter Amberger, N. Edelstein (1998)
Electronic structures of highly-symmetrical compounds of f elements: Part 30. Simulation of the crystal field splitting pattern of tris(bis(trimethylsilyl)amido)erbium (III)Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 54
Daisuke Yoshihara, S. Karasawa, N. Koga (2008)
Cyclic single-molecule magnet in heterospin system.Journal of the American Chemical Society, 130 32
Nicola Magnani, E. Colineau, R. Eloirdi, J. Griveau, R. Caciuffo, S. Cornet, I. May, C. Sharrad, David Collison, R. Winpenny (2010)
Superexchange coupling and slow magnetic relaxation in a transuranium polymetallic complex.Physical review letters, 104 19
N. Magnani, C. Apostolidis, A. Morgenstern, E. Colineau, J. Griveau, H. Bolvin, O. Walter, R. Caciuffo (2011)
Magnetic memory effect in a transuranic mononuclear complex.Angewandte Chemie, 50 7
R. Sessoli, D. Gatteschi, D. Gatteschi, A. Caneschi, M. Novak (1993)
Magnetic bistability in a metal-ion clusterNature, 365
Jeffrey Rinehart, M. Fang, W. Evans, J. Long (2011)
Strong exchange and magnetic blocking in N₂³⁻-radical-bridged lanthanide complexes.Nature chemistry, 3 7
N. Ishikawa (2003)
Simultaneous Determination of Ligand-Field Parameters of Isostructural Lanthanide Complexes by Multidimensional OptimizationJournal of Physical Chemistry A, 107
R. Sessoli, H. Tsai, A. Schake, Sheyi Wang, J. Vincent, K. Folting, D. Gatteschi, G. Christou, D. Hendrickson (1993)
High-spin molecules: [Mn12O12(O2CR)16(H2O)4]Journal of the American Chemical Society, 115
B. Figgis (1966)
Introduction to Ligand Fields
M. Affronte (2009)
Molecular nanomagnets for information technologiesJournal of Materials Chemistry, 19
A. Watanabe, Aika Yamashita, M. Nakano, T. Yamamura, T. Kajiwara (2011)
Multi-path magnetic relaxation of mono-dysprosium(III) single-molecule magnet with extremely high barrier.Chemistry, 17 27
Shangda Jiang, Bingwu Wang, Haoling Sun, Zheming Wang, Song Gao (2011)
An organometallic single-ion magnet.Journal of the American Chemical Society, 133 13
M. Gonidec, R. Biagi, V. Corradini, F. Moro, V. Renzi, U. Pennino, D. Summa, L. Muccioli, C. Zannoni, D. Amabilino, J. Veciana (2011)
Surface supramolecular organization of a terbium(III) double-decker complex on graphite and its single molecule magnet behavior.Journal of the American Chemical Society, 133 17
A. Abragam, B. Bleaney (1970)
Electron paramagnetic resonance of transition ions
N. Ishikawa, Y. Mizuno, S. Takamatsu, T. Ishikawa, S. Koshihara (2008)
Effects of chemically induced contraction of a coordination polyhedron on the dynamical magnetism of bis(phthalocyaninato)disprosium, a single-4f-ionic single-molecule magnet with a Kramers ground state.Inorganic chemistry, 47 22
S. Jank, H. Reddmann, Christos Apostolidis, Hanns-Dieter Amberger (2007)
Zur Elektronenstruktur hochsymmetrischer Verbindungen der f-Elemente. 42 Ableitung und Simulation des Kristallfeld-Aufspaltungsmusters von Tris(bis(trimethylsilyl)amido)ytterbium(III)Zeitschrift für anorganische und allgemeine Chemie, 633
R. Skomski (2008)
Simple models of magnetism
N. Chakov, Sheng-Chiang Lee, A. Harter, P. Kuhns, A. Reyes, S. Hill, N. Dalal, W. Wernsdorfer, K. Abboud, G. Christou (2006)
The properties of the [Mn12O12(O2CR)16(H2O)4] single-molecule magnets in truly axial symmetry: [Mn12O12(O2CCH2Br)16(H2O)4].4CH2Cl2.Journal of the American Chemical Society, 128 21
N. Ishikawa, Miki Sugita, T. Ishikawa, S. Koshihara, Y. Kaizu (2003)
Lanthanide double-decker complexes functioning as magnets at the single-molecular level.Journal of the American Chemical Society, 125 29
K. Buschow, F. Boer (2003)
Physics of Magnetism and Magnetic Materials
A. Rocha, V. García-Suárez, S. Bailey, C. Lambert, J. Ferrer, S. Sanvito (2005)
Towards molecular spintronicsNature Materials, 4
Ian Hewitt, Jinkui Tang, N. Madhu, C. Anson, Yanhua Lan, J. Luzón, M. Etienne, R. Sessoli, A. Powell (2010)
Coupling Dy3 triangles enhances their slow magnetic relaxation.Angewandte Chemie, 49 36
S. Jank, H. Reddmann, Hanns-Dieter Amberger (2008)
Electronic structures of highly symmetrical compounds of f elements XLIII: Parametric analysis of the absorption spectrum of tris(bis(trimethylsilylamido))dysprosium(III) (Dy(btmsa)3)☆Inorganica Chimica Acta, 361
A. Candini, S. Klyatskaya, M. Ruben, W. Wernsdorfer, M. Affronte (2011)
Graphene spintronic devices with molecular nanomagnets.Nano letters, 11 7
B. Wybourne, W. Meggers (1965)
Spectroscopic properties of rare earths
Scientists have long employed lanthanide elements in the design of materials with extraordinary magnetic properties, including the strongest magnets known, SmCo5 and Nd2Fe14B. The properties of these materials are largely a product of fine-tuning the interaction between the lanthanide ion and the crystal lattice. Recently, synthetic chemists have begun to utilize f-elements—both lanthanides and actinides—for the construction of single-molecule magnets, resulting in a rapid expansion of the field. The desirable magnetic characteristics of the f-elements are contingent upon the interaction between the single-ion electron density and the crystal field environment in which it is placed. This interaction leads to the single-ion anisotropies requisite for strong single-molecule magnets. Therefore, it is of vital importance to understand the particular crystal field environments that could lead to maximization of the anisotropy for individual f-elements. Here, we summarize a qualitative method for predicting the ligand architectures that will generate magnetic anisotropy for a variety of f-element ions. It is hoped that this simple model will serve to guide the design of stronger single-molecule magnets incorporating the f-elements.
Chemical Science – Royal Society of Chemistry
Published: Oct 11, 2011
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.