Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

LINKAGE DISEQUILIBRIUM IN A FINITE POPULATION THAT IS PARTIALLY SELFING

LINKAGE DISEQUILIBRIUM IN A FINITE POPULATION THAT IS PARTIALLY SELFING ABSTRACT The linkage disequilibrium expected in a finite, partially selfing population is analyzed, assuming the infinite allele model. Formulas for the expected sum of squares of the linkage disequilibria and the squared standard linkage disequilibrium are derived from the equilibrium values of sixteen inbreeding coefficients required to describe the behavior of the system. These formulas are identical to those obtained with random mating if the effective population size Ne = (l—½S)N and the effective recombination value re = (l-S)r/(l-½S), where S is the proportion of selfing, are substituted for the population size and the recombination value, Therefore, the effect of partial selfing at equilibrium is to reduce the population size by a factor 1 — ½S and the recombination value by a factor (l-S)/(l—½S). This content is only available as a PDF. © Genetics 1980 This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Genetics Oxford University Press

LINKAGE DISEQUILIBRIUM IN A FINITE POPULATION THAT IS PARTIALLY SELFING

Genetics , Volume 94 (3) – Mar 1, 1980

Loading next page...
 
/lp/oxford-university-press/linkage-disequilibrium-in-a-finite-population-that-is-partially-mT7ZcvSRyz

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Oxford University Press
Copyright
Copyright © 2021 Genetics Society of America
ISSN
0016-6731
eISSN
1943-2631
DOI
10.1093/genetics/94.3.777
Publisher site
See Article on Publisher Site

Abstract

ABSTRACT The linkage disequilibrium expected in a finite, partially selfing population is analyzed, assuming the infinite allele model. Formulas for the expected sum of squares of the linkage disequilibria and the squared standard linkage disequilibrium are derived from the equilibrium values of sixteen inbreeding coefficients required to describe the behavior of the system. These formulas are identical to those obtained with random mating if the effective population size Ne = (l—½S)N and the effective recombination value re = (l-S)r/(l-½S), where S is the proportion of selfing, are substituted for the population size and the recombination value, Therefore, the effect of partial selfing at equilibrium is to reduce the population size by a factor 1 — ½S and the recombination value by a factor (l-S)/(l—½S). This content is only available as a PDF. © Genetics 1980 This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

GeneticsOxford University Press

Published: Mar 1, 1980

There are no references for this article.