Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Neutrophil chemotactic factors promote leukocytosis. A common mechanism for cellular recruitment from bone marrow.

Neutrophil chemotactic factors promote leukocytosis. A common mechanism for cellular recruitment... <jats:title>Abstract</jats:title> <jats:p>We investigated cellular responses in a rabbit to i.v. administration of five established chemotactic factors (leukotriene B4 (LTB4), platelet-activating factor (PAF), C5a, N-Formyl-Met-Leu-Phe (F-MLF), and IL-8), and each exerted a characteristic effect on circulating white blood cell levels. All five factors induced a rapid and transient leukopenia. The blood was nearly devoid of circulating neutrophils 5 min after administration of each chemotactic factor. Other leukocytes were also variably depleted during the leukopenic phase, including eosinophils, basophils, monocytes, and lymphocytes. The lymphocyte numbers remained significantly depressed (approximately 30%) for as long as 3 h after administration of PAF or f-MLF. Each chemotactic factor produced a marked neutrophilia (i.e., 250-400% of baseline levels) after the initial leukopenia. Eosinophil numbers were elevated along with the neutrophil response in the C5a- and LTB4-treated animals. Basophil levels were significantly elevated only in LTB4-treated animals. The cellular response to PAF, f-MLF, and IL-8 appeared to be specific for the neutrophils. The kinetic profiles of the neutrophilia induced by PAF (10 micrograms/kg) or f-MLF (2.5 micrograms/kg) were similar, with maximal responses occurring 3 to 4 h after administration. In contrast, LTB4 (10 micrograms/kg), IL-8 (2.5 micrograms/kg), and C5a (5 micrograms/kg) induced a more rapid neutrophilia, with peak responses occurring 1 to 1.5 h after injection, and remaining elevated for 3 to 4 h. In all animals the neutrophilia was accompanied by a relative increase in the number of nonsegmented neutrophils (bands), suggesting that a major component of leukocytosis is caused by the release of bone marrow reserves. Phenidone (10 mg/kg), a dual cyclooxygenase/5-lipoxygenase inhibitor, affected neither the neutropenia nor the neutrophilia induced by C5a, f-MLF, or PAF. The protein synthesis inhibitor actinomycin D also failed to suppress neutrophil responses induced by either C5a or PAF. These results suggest that leukocytosis is a common response induced by all neutrophil chemotactic factors. Leukocytosis appears to be a direct result of the dynamic adaptive response of neutrophils to chemotactic factor stimulation without involvement of a secondary mediator system.</jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Immunology CrossRef

Neutrophil chemotactic factors promote leukocytosis. A common mechanism for cellular recruitment from bone marrow.

The Journal of Immunology , Volume 148 (4): 1119-1128 – Feb 15, 1992

Neutrophil chemotactic factors promote leukocytosis. A common mechanism for cellular recruitment from bone marrow.


Abstract

<jats:title>Abstract</jats:title>
<jats:p>We investigated cellular responses in a rabbit to i.v. administration of five established chemotactic factors (leukotriene B4 (LTB4), platelet-activating factor (PAF), C5a, N-Formyl-Met-Leu-Phe (F-MLF), and IL-8), and each exerted a characteristic effect on circulating white blood cell levels. All five factors induced a rapid and transient leukopenia. The blood was nearly devoid of circulating neutrophils 5 min after administration of each chemotactic factor. Other leukocytes were also variably depleted during the leukopenic phase, including eosinophils, basophils, monocytes, and lymphocytes. The lymphocyte numbers remained significantly depressed (approximately 30%) for as long as 3 h after administration of PAF or f-MLF. Each chemotactic factor produced a marked neutrophilia (i.e., 250-400% of baseline levels) after the initial leukopenia. Eosinophil numbers were elevated along with the neutrophil response in the C5a- and LTB4-treated animals. Basophil levels were significantly elevated only in LTB4-treated animals. The cellular response to PAF, f-MLF, and IL-8 appeared to be specific for the neutrophils. The kinetic profiles of the neutrophilia induced by PAF (10 micrograms/kg) or f-MLF (2.5 micrograms/kg) were similar, with maximal responses occurring 3 to 4 h after administration. In contrast, LTB4 (10 micrograms/kg), IL-8 (2.5 micrograms/kg), and C5a (5 micrograms/kg) induced a more rapid neutrophilia, with peak responses occurring 1 to 1.5 h after injection, and remaining elevated for 3 to 4 h. In all animals the neutrophilia was accompanied by a relative increase in the number of nonsegmented neutrophils (bands), suggesting that a major component of leukocytosis is caused by the release of bone marrow reserves. Phenidone (10 mg/kg), a dual cyclooxygenase/5-lipoxygenase inhibitor, affected neither the neutropenia nor the neutrophilia induced by C5a, f-MLF, or PAF. The protein synthesis inhibitor actinomycin D also failed to suppress neutrophil responses induced by either C5a or PAF. These results suggest that leukocytosis is a common response induced by all neutrophil chemotactic factors. Leukocytosis appears to be a direct result of the dynamic adaptive response of neutrophils to chemotactic factor stimulation without involvement of a secondary mediator system.</jats:p>

Loading next page...
 
/lp/crossref/neutrophil-chemotactic-factors-promote-leukocytosis-a-common-mechanism-kuQLoXpLPb

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0022-1767
DOI
10.4049/jimmunol.148.4.1119
Publisher site
See Article on Publisher Site

Abstract

<jats:title>Abstract</jats:title> <jats:p>We investigated cellular responses in a rabbit to i.v. administration of five established chemotactic factors (leukotriene B4 (LTB4), platelet-activating factor (PAF), C5a, N-Formyl-Met-Leu-Phe (F-MLF), and IL-8), and each exerted a characteristic effect on circulating white blood cell levels. All five factors induced a rapid and transient leukopenia. The blood was nearly devoid of circulating neutrophils 5 min after administration of each chemotactic factor. Other leukocytes were also variably depleted during the leukopenic phase, including eosinophils, basophils, monocytes, and lymphocytes. The lymphocyte numbers remained significantly depressed (approximately 30%) for as long as 3 h after administration of PAF or f-MLF. Each chemotactic factor produced a marked neutrophilia (i.e., 250-400% of baseline levels) after the initial leukopenia. Eosinophil numbers were elevated along with the neutrophil response in the C5a- and LTB4-treated animals. Basophil levels were significantly elevated only in LTB4-treated animals. The cellular response to PAF, f-MLF, and IL-8 appeared to be specific for the neutrophils. The kinetic profiles of the neutrophilia induced by PAF (10 micrograms/kg) or f-MLF (2.5 micrograms/kg) were similar, with maximal responses occurring 3 to 4 h after administration. In contrast, LTB4 (10 micrograms/kg), IL-8 (2.5 micrograms/kg), and C5a (5 micrograms/kg) induced a more rapid neutrophilia, with peak responses occurring 1 to 1.5 h after injection, and remaining elevated for 3 to 4 h. In all animals the neutrophilia was accompanied by a relative increase in the number of nonsegmented neutrophils (bands), suggesting that a major component of leukocytosis is caused by the release of bone marrow reserves. Phenidone (10 mg/kg), a dual cyclooxygenase/5-lipoxygenase inhibitor, affected neither the neutropenia nor the neutrophilia induced by C5a, f-MLF, or PAF. The protein synthesis inhibitor actinomycin D also failed to suppress neutrophil responses induced by either C5a or PAF. These results suggest that leukocytosis is a common response induced by all neutrophil chemotactic factors. Leukocytosis appears to be a direct result of the dynamic adaptive response of neutrophils to chemotactic factor stimulation without involvement of a secondary mediator system.</jats:p>

Journal

The Journal of ImmunologyCrossRef

Published: Feb 15, 1992

There are no references for this article.