Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Hillsley, J. Frangos (1994)
Review: Bone tissue engineering: The role of interstitial fluid flowBiotechnology and Bioengineering, 43
C. Lam, S. Teoh, D. Hutmacher (2007)
Comparison of the degradation of polycaprolactone and polycaprolactone–(β‐tricalcium phosphate) scaffolds in alkaline mediumPolymer International, 56
F. O'Brien, B. Harley, I. Yannas, L. Gibson (2005)
The effect of pore size on cell adhesion in collagen-GAG scaffolds.Biomaterials, 26 4
Ruiyun Zhang, Peter Ma (1999)
Porous poly(L-lactic acid)/apatite composites created by biomimetic process.Journal of biomedical materials research, 45 4
L. Gibson, M. Ashby (1988)
Cellular solids: Structure & properties
A. Biewener (1989)
Scaling body support in mammals: limb posture and muscle mechanics.Science, 245 4913
D. Lickorish, L. Guan, J. Davies (2007)
A three-phase, fully resorbable, polyester/calcium phosphate scaffold for bone tissue engineering: Evolution of scaffold design.Biomaterials, 28 8
Gibson (1997)
10.1017/CBO9781139878326
E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Pişkin (2000)
Poly(d,l-cactide/ε-caprolactone)/hydroxyapatite compositesBiomaterials, 21
K. Choi, Janet Kuhn, M. Ciarelli, S. Goldstein (1990)
The elastic moduli of human subchondral, trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus.Journal of biomechanics, 23 11
B. Rai, S. Teoh, K. Ho, D. Hutmacher, T. Cao, Fulin Chen, Kamal Yacob (2004)
The effect of rhBMP-2 on canine osteoblasts seeded onto 3D bioactive polycaprolactone scaffolds.Biomaterials, 25 24
R. Sousa, R. Reis, A. Cunha, M. Bevis (2003)
Coupling of HDPE/hydroxyapatite composites by silane-based methodologiesJournal of Materials Science: Materials in Medicine, 14
A. Boccaccini, I. Notingher, V. Maquet, R. Jerome (2003)
Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglass® particles for tissue engineering applicationsJournal of Materials Science: Materials in Medicine, 14
Park (1992)
10.1007/978-1-4757-2156-0
P. Chistolini, I. Ruspantini, Paolo Bianco, Alessandro Corsi, R. Cancedda, R. Quarto (1999)
Biomechanical evaluation of cell-loaded and cell-free hydroxyapatite implants for the reconstruction of segmental bone defectsJournal of Materials Science: Materials in Medicine, 10
É. Arnaud, C. Pollak, A. Meunier, L. Sedel, C. Damien, H. Petite (1999)
Osteogenesis with coral is increased by BMP and BMC in a rat cranioplasty.Biomaterials, 20 20
D. Hutmacher, K. Ng, C. Kaps, M. Sittinger, S. Kläring (2003)
Elastic cartilage engineering using novel scaffold architectures in combination with a biomimetic cell carrier.Biomaterials, 24 24
A. Yokoyama, M. Gelinsky, T. Kawasaki, T. Kohgo, U. König, W. Pompe, F. Watari (2005)
Biomimetic porous scaffolds with high elasticity made from mineralized collagen--an animal study.Journal of biomedical materials research. Part B, Applied biomaterials, 75 2
Anastasia McManus, R. Doremus, R. Siegel, R. Bizios (2005)
Evaluation of cytocompatibility and bending modulus of nanoceramic/polymer composites.Journal of biomedical materials research. Part A, 72 1
H. Gray, P. Williams, L. Bannister (1996)
Gray's Anatomy: The Anatomical Basis of Medicine and Surgery
Langer Langer, Vacanti Vacanti (1993)
Tissue engineeringScience, 260
D. Reilly, A. Burstein, V. Frankel (1974)
The elastic modulus for bone.Journal of biomechanics, 7 3
C. Damien, P. Christel, J. Benedict, J. Patat, G. Guillemin (1993)
A composite of natural coral, collagen, bone protein and basic fibroblast growth factor tested in a rat subcutaneous model.Annales chirurgiae et gynaecologiae. Supplementum, 207
Y. Khan, D. Katti, C. Laurencin (2004)
Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation.Journal of biomedical materials research. Part A, 69 4
Yefang Zhou, Fulin Chen, S. Ho, M. Woodruff, T. Lim, D. Hutmacher (2007)
Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts.Biomaterials, 28 5
Peter Ma, Ruiyun Zhang, Guozhi Xiao, R. Franceschi (2001)
Engineering new bone tissue in vitro on highly porous poly(alpha-hydroxyl acids)/hydroxyapatite composite scaffolds.Journal of biomedical materials research, 54 2
D. Tancred, A. Carr, B. Mccormack (2001)
The sintering and mechanical behavior of hydroxyapatite with bioglass additionsJournal of Materials Science: Materials in Medicine, 12
B. Rai, S. Teoh, D. Hutmacher, T. Cao, K. Ho (2005)
Novel PCL-based honeycomb scaffolds as drug delivery systems for rhBMP-2.Biomaterials, 26 17
Ignjatović, Plavšić, Miljković, Živković, Uskoković (1999)
Microstructural characteristics of calcium hydroxyapatite/poly‐ l‐lactide based compositesJournal of Microscopy, 196
H. Petite, V. Viateau, W. Bensaïd, A. Meunier, C. Pollak, M. Bourguignon, K. Oudina, L. Sedel, G. Guillemin (2000)
Tissue-engineered bone regenerationNature Biotechnology, 18
A. Redlich, C. Perka, O. Schultz, R. Spitzer, T. Ha¨upl, G. Burmester, M. Sittinger (1999)
Bone engineering on the basis of periosteal cells cultured in polymer fleecesJournal of Materials Science: Materials in Medicine, 10
R. Grundel, M. Chapman, T. Yee, D. Moore (1991)
Autogeneic bone marrow and porous biphasic calcium phosphate ceramic for segmental bone defects in the canine ulna.Clinical orthopaedics and related research, 266
T. Hassenkam, G. Fantner, Jacquelin Cutroni, J. Weaver, D. Morse, P. Hansma (2004)
High-resolution AFM imaging of intact and fractured trabecular bone.Bone, 35 1
J. Rho, T. Tsui, G. Pharr (1997)
Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation.Biomaterials, 18 20
T. Kaito, A. Myoui, K. Takaoka, N. Saito, M. Nishikawa, Noriyuki Tamai, H. Ohgushi, H. Yoshikawa (2005)
Potentiation of the activity of bone morphogenetic protein-2 in bone regeneration by a PLA-PEG/hydroxyapatite composite.Biomaterials, 26 1
Hassna Ramay, Miqin Zhang (2003)
Preparation of porous hydroxyapatite scaffolds by combination of the gel-casting and polymer sponge methods.Biomaterials, 24 19
K. Marra, Jeffrey Szem, P. Kumta, P. Dimilla, L. Weiss (1999)
In vitro analysis of biodegradable polymer blend/hydroxyapatite composites for bone tissue engineering.Journal of biomedical materials research, 47 3
R. Langer, J. Vacanti (1993)
Tissue engineering : Frontiers in biotechnologyScience, 260
S. Liao, F. Cui (2004)
In vitro and in vivo degradation of mineralized collagen-based composite scaffold: nanohydroxyapatite/collagen/poly(L-lactide).Tissue engineering, 10 1-2
S. Rizzi, D. Heath, A. Coombes, N. Bock, M. Textor, S. Downes (2001)
Biodegradable polymer/hydroxyapatite composites: surface analysis and initial attachment of human osteoblasts.Journal of biomedical materials research, 55 4
Hench (1993)
10.1142/2028
H. Kim, Hyoun‐Ee Kim, V. Salih (2005)
Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds.Biomaterials, 26 25
Ruiyun Zhang, P. Ma (1999)
Poly(alpha-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering. I. Preparation and morphology.Journal of biomedical materials research, 44 4
C. Vacanti, L. Bonassar, M. Vacanti, J. Shufflebarger (2001)
Replacement of an avulsed phalanx with tissue-engineered bone.The New England journal of medicine, 344 20
M. Navarro, M. Ginebra, J. Planell, S. Zeppetelli, L. Ambrosio (2004)
Development and cell response of a new biodegradable composite scaffold for guided bone regenerationJournal of Materials Science: Materials in Medicine, 15
V. Karageorgiou, D. Kaplan (2005)
Porosity of 3D biomaterial scaffolds and osteogenesis.Biomaterials, 26 27
M. Vert, S. Li, H. Garreau (1992)
New insights on the degradation of bioresorbable polymeric devices based on lactic and glycolic acids.Clinical materials, 10 1-2
J. Kühne, R. Bartl, B. Frisch, Claus Hammer, V. Jansson, M. Zimmer (1994)
Bone formation in coralline hydroxyapatite. Effects of pore size studied in rabbits.Acta orthopaedica Scandinavica, 65 3
K. Gross, L. Rodríguez-Lorenzo (2004)
Biodegradable composite scaffolds with an interconnected spherical network for bone tissue engineering.Biomaterials, 25 20
R. Cancedda, M. Mastrogiacomo, G. Bianchi, Anna Derubeis, A. Muraglia, R. Quarto (2003)
Bone marrow stromal cells and their use in regenerating bone.Novartis Foundation symposium, 249
J. Schantz, T. Lim, Chou Ning, S. Teoh, K. Tan, Shih-Chang Wang, D. Hutmacher (2006)
Cranioplasty after Trephination using a Novel Biodegradable Burr Hole Cover: Technical Case ReportOperative Neurosurgery, 58
E. Ural, K. Kesenci, L. Fambri, C. Migliaresi, E. Pişkin (2000)
Poly(D,L-lactide/epsilon-caprolactone)/hydroxyapatite composites.Biomaterials, 21 21
Hassna Ramay, Miqin Zhang (2004)
Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering.Biomaterials, 25 21
Langer (1993)
10.1126/science.8493529Science, 260
D. Hutmacher, A. Kirsch, Ackermann Kl, M. Hürzeler (1998)
Matrix and Carrier Materials for Bone Growth Factors: State of the Art and Future Perspectives
D. Hutmacher (2000)
Scaffolds in tissue engineering bone and cartilage.Biomaterials, 21 24
G. Fantner, H. Birkedal, J. Kindt, T. Hassenkam, J. Weaver, Jacquelin Cutroni, Bonnie Bosma, L. Bawazer, Marquesa Finch, Geraldo Cidade, D. Morse, G. Stucky, P. Hansma (2004)
Influence of the degradation of the organic matrix on the microscopic fracture behavior of trabecular bone.Bone, 35 5
R. Mccalden, J. McGeough, C. Court-Brown (1997)
Age-Related Changes in the Compressive Strength of Cancellous Bone. The Relative Importance of Changes in Density and Trabecular Architecture*The Journal of Bone & Joint Surgery, 79
V. Maquet, Aldo Boccaccini, L. Pravata, I. Notingher, R. Jerome (2004)
Porous poly(alpha-hydroxyacid)/Bioglass composite scaffolds for bone tissue engineering. I: Preparation and in vitro characterisation.Biomaterials, 25 18
J. Temenoff, A. Mikos (2000)
Injectable biodegradable materials for orthopedic tissue engineering.Biomaterials, 21 23
S. Bruder, K. Kraus, V. Goldberg, S. Kadiyala (1998)
The Effect of Implants Loaded with Autologous Mesenchymal Stem Cells on the Healing of Canine Segmental Bone Defects*The Journal of Bone & Joint Surgery, 80
C. Rodrigues, P. Serricella, A.B.R. Linhares, R. Guerdes, Radovan Borojevic, M. Rossi, Maria Duarte, Marcos Farina (2003)
Characterization of a bovine collagen-hydroxyapatite composite scaffold for bone tissue engineering.Biomaterials, 24 27
Nenad Ignjatović, S. Tomić, M. Dakić, M. Miljković, M. Plavšić, D. Uskoković (1999)
Synthesis and properties of hydroxyapatite/poly-?-lactide composite biomaterialsBiomaterials, 20
M. Gomes, R. Reis, A. Cunha, C. Blitterswijk, J. Bruijn (2001)
Cytocompatibility and response of osteoblastic-like cells to starch-based polymers: effect of several additives and processing conditions.Biomaterials, 22 13
L. Guan, J. Davies (2004)
Preparation and characterization of a highly macroporous biodegradable composite tissue engineering scaffold.Journal of biomedical materials research. Part A, 71 3
M. Wang, W. Bonfield (2001)
Chemically coupled hydroxyapatite-polyethylene composites: structure and properties.Biomaterials, 22 11
Q. Liu, J. Wijn, C. Blitterswijk (1998)
Composite biomaterials with chemical bonding between hydroxyapatite filler particles and PEG/PBT copolymer matrix.Journal of biomedical materials research, 40 3
S. Liao, Wei Wang, M. Uo, S. Ohkawa, T. Akasaka, K. Tamura, F. Cui, F. Watari (2005)
A three-layered nano-carbonated hydroxyapatite/collagen/PLGA composite membrane for guided tissue regeneration.Biomaterials, 26 36
P. Cerrai, G. Guerra, M. Tricoli, A. Krajewski, A. Ravaglioli, R. Martinetti, L. Dolcini, M. Fini, A. Scarano, A. Piattelli (1999)
Periodontal membranes from composites of hydroxyapatite and bioresorbable block copolymersJournal of Materials Science: Materials in Medicine, 10
Y. Shikinami, M. Okuno (1999)
Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly-L-lactide (PLLA): Part I. Basic characteristics.Biomaterials, 20 9
S. Liao, F. Cui, Wei Zhang, Q. Feng (2004)
Hierarchically biomimetic bone scaffold materials: nano-HA/collagen/PLA composite.Journal of biomedical materials research. Part B, Applied biomaterials, 69 2
J. Brekke, J. Toth (1998)
Principles of tissue engineering applied to programmable osteogenesis.Journal of biomedical materials research, 43 4
J. Zeltinger, J. Sherwood, D. Graham, Ralph Müeller, L. Griffith (2001)
Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition.Tissue engineering, 7 5
G. Wei, P. Ma (2004)
Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering.Biomaterials, 25 19
J. Rho, L. Kuhn-Spearing, Peter Zioupos (1998)
Mechanical properties and the hierarchical structure of bone.Medical engineering & physics, 20 2
M. Wolcott (1990)
Cellular solids: Structure and propertiesMaterials Science and Engineering A-structural Materials Properties Microstructure and Processing, 123
T. Karande, T. Karande, J. Ong, C. Agrawal (2004)
Diffusion in Musculoskeletal Tissue Engineering Scaffolds: Design Issues Related to Porosity, Permeability, Architecture, and Nutrient MixingAnnals of Biomedical Engineering, 32
Hillsley Hillsley, Frangos Frangos (1994)
Bone tissue engineering: the role of interstitial fluid flowBiotechnol Bioeng, 43
L. Mathieu, T. Mueller, P. Bourban, D. Pioletti, R. Müller, J. Månson (2006)
Architecture and properties of anisotropic polymer composite scaffolds for bone tissue engineering.Biomaterials, 27 6
Zhangyi Li, L. Yubao, A. Yang, Xuelin Peng, Xue-jiang Wang, Z. Xiang (2005)
Preparation and in vitro investigation of chitosan/nano-hydroxyapatite composite used as bone substitute materialsJournal of Materials Science: Materials in Medicine, 16
Y. Kim, H. Song, D. Riu, S. Kim, H. Kim, Jooho Moon (2005)
Preparation of porous Si-incorporated hydroxyapatiteCurrent Applied Physics, 5
Scaffold‐based bone tissue engineering aims to repair/regenerate bone defects. Such a treatment concept involves seeding autologous osteogenic cells throughout a biodegradable scaffold to create a scaffold–cell hybrid that may be called a tissue‐engineered construct (TEC). A variety of materials and scaffolding fabrication techniques for bone tissue engineering have been investigated over the past two decades. This review aims to discuss the advances in bone engineering from a scaffold material point of view. In the first part the reader is introduced to the basic principles of bone engineering. The important properties of the biomaterials and the scaffold design in the making of tissue engineered bone constructs are discussed in detail, with special emphasis placed on the new material developments, namely composites made of synthetic polymers and calcium phosphates. Advantages and limitations of these materials are analysed along with various architectural parameters of scaffolds important for bone tissue engineering, e.g. porosity, pore size, interconnectivity and pore‐wall microstructures. Copyright © 2007 John Wiley & Sons, Ltd.
Journal of Tissue Engineering and Regenerative Medicine – Wiley
Published: Jul 1, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.