Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors.

Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines... Recently, a novel amyloid precursor protein beta-secretase (designated BACE) was identified. Because activated microglia and astrocytes play a role in amyloidogenesis in Alzheimer's disease, the constitutive and glial cytokine/growth factor-regulated expression of BACE was studied in human neural cell lines. By reverse transcription-polymerase chain reaction (RT-PCR) analysis, BACE mRNA expression was identified in various human neural and non-neural cell lines. By northern blot analysis, the expression of BACE mRNA composed of five distinct transcripts (>8.0, 7.0, 6.0, 4.4 and 2.6 kb) was elevated markedly in NTera2 teratocarcinoma cells following retinoic acid-induced neuronal differentiation. But the levels of three major BACE mRNA species (7.0, 6.0 and 4.4 kb) were not significantly altered in NTera2-derived neurons, SK-N-SH neuroblastoma or U-373MG astrocytoma following exposure to tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, interferon-gamma, transforming growth factor-beta1, epidermal growth factor, basic fibroblast growth factor, brain-derived neurotrophic factor, dibutyryl cyclic adenosine monophosphate or phorbol 12-myristate 13-acetate. These results indicate that BACE mRNA is expressed constitutively in human neural cells and its expression is upregulated during neuronal differentiation, but it is unlikely to be regulated by activated glia-derived cytokines and growth factors. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Neuropathology : official journal of the Japanese Society of Neuropathology Pubmed

Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors.

Neuropathology : official journal of the Japanese Society of Neuropathology , Volume 20 (4): 8 – Apr 12, 2001

Amyloid precursor protein beta-secretase (BACE) mRNA expression in human neural cell lines following induction of neuronal differentiation and exposure to cytokines and growth factors.


Abstract

Recently, a novel amyloid precursor protein beta-secretase (designated BACE) was identified. Because activated microglia and astrocytes play a role in amyloidogenesis in Alzheimer's disease, the constitutive and glial cytokine/growth factor-regulated expression of BACE was studied in human neural cell lines. By reverse transcription-polymerase chain reaction (RT-PCR) analysis, BACE mRNA expression was identified in various human neural and non-neural cell lines. By northern blot analysis, the expression of BACE mRNA composed of five distinct transcripts (>8.0, 7.0, 6.0, 4.4 and 2.6 kb) was elevated markedly in NTera2 teratocarcinoma cells following retinoic acid-induced neuronal differentiation. But the levels of three major BACE mRNA species (7.0, 6.0 and 4.4 kb) were not significantly altered in NTera2-derived neurons, SK-N-SH neuroblastoma or U-373MG astrocytoma following exposure to tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, interferon-gamma, transforming growth factor-beta1, epidermal growth factor, basic fibroblast growth factor, brain-derived neurotrophic factor, dibutyryl cyclic adenosine monophosphate or phorbol 12-myristate 13-acetate. These results indicate that BACE mRNA is expressed constitutively in human neural cells and its expression is upregulated during neuronal differentiation, but it is unlikely to be regulated by activated glia-derived cytokines and growth factors.

Loading next page...
 
/lp/pubmed/amyloid-precursor-protein-beta-secretase-bace-mrna-expression-in-human-kWVO7GP3YL

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0919-6544
DOI
10.1046/j.1440-1789.2000.00349.x
pmid
11211053

Abstract

Recently, a novel amyloid precursor protein beta-secretase (designated BACE) was identified. Because activated microglia and astrocytes play a role in amyloidogenesis in Alzheimer's disease, the constitutive and glial cytokine/growth factor-regulated expression of BACE was studied in human neural cell lines. By reverse transcription-polymerase chain reaction (RT-PCR) analysis, BACE mRNA expression was identified in various human neural and non-neural cell lines. By northern blot analysis, the expression of BACE mRNA composed of five distinct transcripts (>8.0, 7.0, 6.0, 4.4 and 2.6 kb) was elevated markedly in NTera2 teratocarcinoma cells following retinoic acid-induced neuronal differentiation. But the levels of three major BACE mRNA species (7.0, 6.0 and 4.4 kb) were not significantly altered in NTera2-derived neurons, SK-N-SH neuroblastoma or U-373MG astrocytoma following exposure to tumor necrosis factor-alpha, interleukin (IL)-1beta, IL-6, interferon-gamma, transforming growth factor-beta1, epidermal growth factor, basic fibroblast growth factor, brain-derived neurotrophic factor, dibutyryl cyclic adenosine monophosphate or phorbol 12-myristate 13-acetate. These results indicate that BACE mRNA is expressed constitutively in human neural cells and its expression is upregulated during neuronal differentiation, but it is unlikely to be regulated by activated glia-derived cytokines and growth factors.

Journal

Neuropathology : official journal of the Japanese Society of NeuropathologyPubmed

Published: Apr 12, 2001

There are no references for this article.