Access the full text.
Sign up today, get DeepDyve free for 14 days.
P. Stott, S. Tett, G. Jones, M. Allen, Johnny Mitchell, G. Jenkins (2000)
External control of 20th century temperature by natural and anthropogenic forcings.Science, 290 5499
M. Huddleston, C. Pollock, M. Wüest, J. Pickett, T. Moore, W.K. Peterson (2000)
Toroidal ion distributions observed at high altitudes equatorward of the cuspGeophysical Research Letters, 27
C. Forest, M. Allen, P. Stone, A. Sokolov (2000)
Constraining uncertainties in climate models using climate change detection techniquesGeophysical Research Letters, 27
F Joos (2001)
Global warming feedbacks on terrestrial carbon uptake under the IPCC emission scenariosGlob. Biogeochem. Cycles, 15
P. Pelcé (1988)
Dynamics of curved fronts
(1991)
On a new kind of ramified electrodeposits
M. Matsushita, M. Sano, Y. Hayakawa, H. Honjo, Y. Sawada (1984)
Fractal structures of zinc metal leaves grown by electrodepositionPhysical Review Letters, 53
(1990)
Interfacial velocity in electrochemical deposition and the Hecker effect
A. Schmittner, T. Stocker (2001)
A Seasonally Forced Ocean–Atmosphere Model for Paleoclimate StudiesJournal of Climate, 14
(1994)
Defect Structure, Morphology and Properties of Deposits Proceedings of the Materials Week RosemontMinerals Metals Materials Society
V. Fleury, D. Barkey (1996)
Runaway growth in two-dimensional electrodepositionEPL, 36
(1990)
Electrochemical aspects of the generation of ramified metallic deposits
N Nakićenović (2000)
Special Report on Emission Scenarios
S. Levitus, J. Antonov, J. Wang, T. Delworth, K. Dixon, A. Broccoli (2001)
Anthropogenic Warming of Earth's Climate SystemScience, 292
T. Wigley, S. Raper (2001)
Interpretation of High Projections for Global-Mean WarmingScience, 293
acknowledges the financial support of Saint-Gobain
Fleury, Rosso, Chazalviel, Sapoval (1991)
Experimental aspects of dense morphology in copper electrodeposition.Physical review. A, Atomic, molecular, and optical physics, 44 10
M. Rosso, J. Chazalviel, V. Fleury, E. Chassaing (1994)
experimental evidence for gravity induced motion in the vicinity of ramified electrodepositsElectrochimica Acta, 39
(1990)
The role of the anions in the growth speed of electrochemical deposits
M. Allen, P. Stott, J. Mitchell, R. Schnur, T. Delworth (2000)
Quantifying the uncertainty in forecasts of anthropogenic climate changeNature, 407
J. Chazalviel, M. Rosso, E. Chassaing, V. Fleury (1996)
A quantitative study of gravity-induced convection in two-dimensional parallel electrodeposition cellsJournal of Electroanalytical Chemistry, 407
N Andronova, ME Schlesinger (2001)
Objective estimation of the probability distribution for climate sensitivityJ. Geophys. Res., 106
(2003)
AcknowledgementsPsychoneuroendocrinology, 28
(2001)
J. Clim
T. Barnett, D. Pierce, R. Schnur (2001)
Detection of Anthropogenic Climate Change in the World's OceansScience, 292
(1992)
Fractal Growth PhenomenaWorld Scientific
Garik, Barkey, Ben-Jacob, Bochner, Broxholm, Miller, Orr, Zamir (1989)
Laplace- and diffusion-field-controlled growth in electrochemical deposition.Physical review letters, 62 23
R. Knutti, T. Stocker, D. Wright (2000)
The effects of subgrid-scale parameterizations in a zonally averaged ocean modelJournal of Physical Oceanography, 30
J. Houghton, Y. Ding, D. Griggs, M. Noguer, P. Linden, X. Dai, K. Maskell, C. Johnson (2001)
Climate change 2001 : the scientific basisForeign Affairs, 81
T. Stocker, L. Mysak, D. Wright (1992)
A Zonally Averaged, Coupled Ocean-Atmosphere Model for Paleoclimate StudiesJournal of Climate, 5
F. Joos, I. Prentice, S. Sitch, R. Meyer, G. Hooss, G. Plattner, S. Gerber, K. Hasselmann (2001)
Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission ScenariosGlobal Biogeochemical Cycles, 15
Gian-Kaspar Plattner, F. Joos, T. Stocker, O. Marchal (2001)
Feedback mechanisms and sensitivities of ocean carbon uptake under global warmingTellus B: Chemical and Physical Meteorology, 53
P. Jones, M. New, D. Parker, Seelye Martin, I. Rigor (1999)
Surface air temperature and its changes over the past 150 yearsReviews of Geophysics, 37
S. Levitus, J. Antonov, T. Boyer, Cathy Stephens (2000)
Warming of the World OceanScience, 287
G. Hegerl, P. Stott, M. Allen, J. Mitchell, S. Tett, U. Cubasch (2000)
Optimal detection and attribution of climate change: sensitivity of results to climate model differencesClimate Dynamics, 16
Correspondence and requests for materials should be addressed to V.F. (e-mail: [email protected])
N. Nakicenovic, J. Alcamo, Ged Davis, B. Vries, J. Fenhann, S. Gaffin, K. Gregory, A. Grubler, T. Jung, T. Kram, E. Rovere, L. Michaelis, S. Mori, T. Morita, W. Pepper, Hugh Pitcher, L. Price, K. Riahi, A. Roehrl, H. Rogner, Alexei Sankovski, M. Schlesinger, P. Shukla, Steven Smith, R. Swart, S. Rooijen, Nadejda Victor, Z. Dadi (2000)
Special report on emissions scenarios : a special report of Working group III of the Intergovernmental Panel on Climate Change
V. Fleury (1997)
Branched fractal patterns in non-equilibrium electrochemical deposition from oscillatory nucleation and growthNature, 390
W. Gardner, Joseph Cambridge, L. Williams (1957)
Science and Civilization in ChinaThe Yale Journal of Biology and Medicine, 29
A. Schmittner, T. Stocker (1999)
The Stability of the Thermohaline Circulation in Global Warming ExperimentsJournal of Climate, 12
O. Boucher, J. Haywood (2001)
On summing the components of radiative forcing of climate changeClimate Dynamics, 18
T. Crowley (2000)
Causes of climate change over the past 1000 yearsScience, 289 5477
China Monumentis qua Sacris qua Profanis , nec non Variis Naturae et Artis Spectaculis Aliarumque Rerim Meomriabilium Argumentis Illustrata ( Apud Janssonium et Weyerstraten , Amsterdam , 1667 )
S. Levitus, J. Antonov, J. Wang, T. Delworth, K. Dixon, A. Broccoli
Detection of Anthropogenic Climate Change in the World ’ s Oceans
S. Tett, P. Stott, M. Allen, W. Ingram, J. Mitchell (1999)
Causes of twentieth-century temperature change near the Earth's surfaceNature, 399
P. Stott, S. Tett, G. Jones, M. Allen, W. Ingram, J. Mitchell (2001)
Attribution of twentieth century temperature change to natural and anthropogenic causesClimate Dynamics, 17
E. Ben-Jacob, P. Garik (1990)
The formation of patterns in non-equilibrium growthNature, 343
P. Meakin (1998)
Fractals, scaling, and growth far from equilibrium
B. Santer, Karl Taylor, T. Wigley, T. Johns, P. Jones, David Karoly, J. Mitchell, Abraham Oort, Joyce Penner, V. Ramaswamy, M. Schwarzkopf, R. Stouffer, S. Tett (1995)
A search for human influences on the thermal structure of the atmosphereNature, 382
(1664)
Mundus Subterraneus, Caput VI, liber duodecimus part I, Ars Chymurgica
J. Gregory, R. Stouffer, S. Raper, P. Stott, N. Rayner (2002)
An Observationally Based Estimate of the Climate SensitivityJournal of Climate, 15
J., G., A., D. I.FUNG
Climate Response Times : Dependence on Climate Sensitivity and Ocean Mixing
C. Forest, P. Stone, A. Sokolov, M. Allen, M. Webster (2002)
Quantifying Uncertainties in Climate System Properties with the Use of Recent Climate ObservationsScience, 295
N. Andronova, M. Schlesinger (2001)
Objective estimation of the probability density function for climate sensitivityJournal of Geophysical Research, 106
S. Schneider (2001)
What is 'dangerous' climate change?Nature, 411
(1996)
IPCC Second Scientific Assessment of Climate Change
The assessment of uncertainties in global warming projections is often based on expert judgement, because a number of key variables in climate change are poorly quantified. In particular, the sensitivity of climate to changing greenhouse-gas concentrations in the atmosphere and the radiative forcing effects by aerosols are not well constrained, leading to large uncertainties in global warming simulations 1 . Here we present a Monte Carlo approach to produce probabilistic climate projections, using a climate model of reduced complexity. The uncertainties in the input parameters and in the model itself are taken into account, and past observations of oceanic and atmospheric warming are used to constrain the range of realistic model responses. We obtain a probability density function for the present-day total radiative forcing, giving 1.4 to 2.4 W m-2 for the 5–95 per cent confidence range, narrowing the global-mean indirect aerosol effect to the range of 0 to –1.2 W m-2. Ensemble simulations for two illustrative emission scenarios suggest a 40 per cent probability that global-mean surface temperature increase will exceed the range predicted by the Intergovernmental Panel on Climate Change (IPCC), but only a 5 per cent probability that warming will fall below that range.
Nature – Springer Journals
Published: Apr 18, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.