Access the full text.
Sign up today, get DeepDyve free for 14 days.
M. Nadeem, Muhammad Akhtar, A. Khan (2005)
Effects of low frequency near metal-insulator transition temperatures on polycrystalline La0.65Ca0.35Mn1−yFeyO3 (where y=0.05–0.10) ceramic oxidesSolid State Communications, 134
S. Hajarpour, K. Gheisari, A. Raouf (2013)
Characterization of nanocrystalline Mg0.6Zn0.4Fe2O4 soft ferrites synthesized by glycine-nitrate combustion processJournal of Magnetism and Magnetic Materials, 329
S Thakura (2016)
10.1590/1980-5373-MR-2015-0504Mater. Res., 19
(2008)
ZView: a software program for IES analysis
Mikael Olsson (2019)
StructC# 8 Quick Syntax Reference
P. Roy, J. Bera (2006)
Effect of Mg substitution on electromagnetic properties of (Ni0.25Cu0.20Zn0.55)Fe2O4 ferrite prepared by auto combustion methodJournal of Magnetism and Magnetic Materials, 298
M. Fayek, S. Ata‐Allah, H. Refai (1999)
On the cation distribution in Ni1−xCuxFe2−yAlyO4 spinelsJournal of Applied Physics, 85
25 - Fig.9: Nyquist spectra for Mg 0.5 Co 0.5 Fe 1.6 Al 0.4 O 4 ferrite fitting using Zview software. The inset shows the used electrical circuit
X. Brannmjk (2020)
ferritesCatalysis from A to Z
S. Patange, S. Shirsath, B. Toksha, S. Jadhav, S. Shukla, K. Jadhav (2009)
Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferritesApplied Physics A, 95
Jennifer Roe, Steve Roberts (2020)
Electricity and MagnetismWhy Toast Lands Jelly-Side Down
(2014)
Mater
(1976)
Acta Cryst
S. Rahman, K. Nadeem, M. Anis-Ur-Rehman, M. Mumtaz, S. Naeem, I. Letofsky-Papst (2013)
Structural and magnetic properties of ZnMg-ferrite nanoparticles prepared using the co-precipitation methodCeramics International, 39
U. Wongpratat, S. Maensiri, E. Swatsitang (2017)
Effect of Mg substitution on magnetic properties of Co1−xMgxFe2O4 nanoparticles investigated by EXAFS analysisCeramics International, 43
MA El Hiti (1999)
10.1016/S0304-8853(98)00356-4J. Magn. Magn. Mater., 192
(2015)
RSC Adv
M. Hsini, N. Hamdaoui, S. Hcini, M. Bouazizi, S. Zemni, L. Beji (2018)
Effect of iron doping at Mn-site on complex impedance spectroscopy properties of Nd0.67Ba0.33MnO3 perovskitePhase Transitions, 91
AM Abdeen (1998)
10.1016/S0304-8853(97)01144-XJ. Magn. Magn. Mater., 185
A. Jonscher (1977)
The ‘universal’ dielectric responseNature, 267
(2010)
D Appl
H Rietveld (1969)
10.1107/S0021889869006558J. Appl. Crystallogr., 2
Fakher Hcini, S. Hcini, B. Alzahrani, S. Zemni, M. Bouazizi (2020)
Effect of Cr substitution on structural, magnetic and impedance spectroscopic properties of Cd0.5Zn0.5Fe2−xCrxO4 ferritesApplied Physics A, 126
S. Hcini, S. Hcini, A. Selmi, H. Rahmouni, A. Omri, M. Bouazizi (2017)
Structural, dielectric and complex impedance properties of T0.6Co0.4Fe2O4 (T=Ni, Mg) ferrite nanoparticles prepared by sol gel methodCeramics International, 43
A. Azam, A. Jawad, A. Ahmed, M. Chaman, A. Naqvi (2011)
Structural, optical and transport properties of Al3+ doped BiFeO3 nanopowder synthesized by solution combustion methodJournal of Alloys and Compounds, 509
M. Idrees, M. Nadeem, M. Hassan (2010)
Investigation of conduction and relaxation phenomena in LaFe0.9Ni0.1O3 by impedance spectroscopyJournal of Physics D: Applied Physics, 43
M. Idrees, M. Nadeem, M. Atif, M. Siddique, M. Mehmood, M. Hassan (2011)
Origin of colossal dielectric response in LaFeO3Acta Materialia, 59
K. Rao, P. Krishna, D. Prasad, D. Gangadharudu (2007)
Modulus spectroscopy of lead potassium titanium niobate (Pb0.95K0.1Ti0.25Nb1.8O6) ceramicsJournal of Materials Science, 42
(2017)
Ceram
R. Gimenes, M. Baldissera, M. Silva, C. Silveira, D. Soares, L. Perazolli, M. Silva, M. Zaghete (2012)
Structural and magnetic characterization of MnxZn1-xFe2O4 (x=0.2; 0.35; 0.65; 0.8; 1.0) ferrites obtained by the citrate precursor methodCeramics International, 38
A. Selmi, S. Hcini, H. Rahmouni, A. Omri, M. Bouazizi, A. Dhahri (2017)
Synthesis, structural and complex impedance spectroscopy studies of Ni0.4Co0.4Mg0.2Fe2O4 spinel ferritePhase Transitions, 90
1. ������������������� � (keywords)
ON Verma (2015)
10.1039/C5RA01146ARSC Adv., 5
Li Wang, Ming Lu, Yu Liu, Ji Li, Mei Liu, Hai-bo Li (2015)
The structure, magnetic properties and cation distribution of Co1−xMgxFe2O4/SiO2 nanocomposites synthesized by sol–gel methodCeramics International, 41
A. Jawad, A. Ahmed, S. Ashraf, M. Chaman, A. Azam (2012)
Exploring the dielectric behaviour of nano-structured Al3+ doped BiFeO3 ceramics synthesized by auto ignition processJournal of Alloys and Compounds, 530
(2015)
Dalton Trans
H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni (2017)
Europium substitution for lanthanium in LaBaMnO – The structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskiteJournal of Alloys and Compounds, 690
M. Ahmed, A. EL-Khawlani (2009)
Enhancement of the crystal size and magnetic properties of Mg-substituted Co ferriteJournal of Magnetism and Magnetic Materials, 321
B. Toksha, S. Shirsath, M. Mane, K. Jadhav (2017)
Auto-ignition synthesis of CoFe2O4 with Al3+ substitution for high frequency applicationsCeramics International, 43
A. Shukla, R. Choudhary, A. Thakur (2009)
Thermal, structural and complex impedance analysis of Mn4+ modified BaTiO3 electroceramicJournal of Physics and Chemistry of Solids, 70
CG Koops (1951)
10.1103/PhysRev.83.121Phys. Rev., 83
A. Manikandan, J. Vijaya, L. Kennedy, M. Bououdina (2013)
Structural, optical and magnetic properties of Zn1−xCuxFe2O4 nanoparticles prepared by microwave combustion methodJournal of Molecular Structure, 1035
- 23 - 10 2 10 3 10 4 10 5 10 6 F r e qu e n cy ( H z ) Fig.7: The tan δ behavior versus frequency and temperature for Mg 0.5 Co 0.5 Fe 1.6 Al 0.4 O 4 ferrite
M. Dhaou, S. Hcini, A. Mallah, M. Bouazizi, A. Jemni (2016)
Structural and complex impedance spectroscopic studies of Ni0.5Mg0.3Cu0.2Fe2O4 ferrite nanoparticleApplied Physics A, 123
MA Rehman (2011)
10.4028/www.scientific.net/JNanoR.14.1J. Nano Res., 14
Q. Lin, Yun He, Jinpei Lin, Fang Yang, Liping Wang, Jianghui Dong (2019)
Structural and magnetic studies of Mg substituted cobalt composite oxide catalyst Co1−Mg Fe2O4Journal of Magnetism and Magnetic Materials
(2004)
Solid State Ion
I. Ahmad, T. Abbas, A. Ziya, G. Abbas, A. Maqsood (2014)
Size dependent structural and magnetic properties of Al substituted Co–Mg ferrites synthesized by the sol–gel auto-combustion methodMaterials Research Bulletin, 52
I. Sharifi, H. Shokrollahi, S. Amiri (2012)
Ferrite-based magnetic nanofluids used in hyperthermia applicationsJournal of Magnetism and Magnetic Materials, 324
A. Gholizadeh, E. Jafari (2017)
Effects of sintering atmosphere and temperature on structural and magnetic properties of Ni-Cu-Zn ferrite nano-particles: Magnetic enhancement by a reducing atmosphereJournal of Magnetism and Magnetic Materials, 422
M. Naseri, M. Halimah, A. Dehzangi, A. Kamalianfar, E. Saion, B. Majlis (2014)
A comprehensive overview on the structure and comparison of magnetic properties of nanocrystalline synthesized by a thermal treatment methodJournal of Physics and Chemistry of Solids, 75
Akshay Bhosale, B. Chougule (2006)
X-ray, infrared and magnetic studies of Al-substituted Ni ferritesMaterials Chemistry and Physics, 97
B. Antić, A. Kremenović, A. Nikolić, M. Stoiljković (2004)
Cation Distribution and Size-Strain Microstructure Analysis in Ultrafine Zn−Mn Ferrites Obtained from Acetylacetonato ComplexesJournal of Physical Chemistry B, 108
K. Funke (1993)
Jump relaxation in solid electrolytesProgress in Solid State Chemistry, 22
K. Wagner
Zur Theorie der unvollkommenen DielektrikaAnnalen der Physik, 345
R. Bergman (2000)
General susceptibility functions for relaxations in disordered systemsJournal of Applied Physics, 88
N. Vasoya, P. Jha, K. Saija, S. Dolia, K. Zankat, K. Modi (2016)
Electric Modulus, Scaling and Modeling of Dielectric Properties for Mn2+-Si4+ Co-substituted Mn-Zn FerritesJournal of Electronic Materials, 45
(2018)
Phase Transit
H Rahmouni (2015)
10.1039/C5DT00444FDalton Trans., 44
S. Kane, M. Satalkar (2017)
Correlation between magnetic properties and cationic distribution of Zn0.85−xNixMg0.05Cu0.1Fe2O4 nano spinel ferrite: effect of Ni dopingJournal of Materials Science, 52
M. Ahmad, Koji Yamada, T. Okuda (2004)
Conductivity spectra and comparative scaling studies of polycrystalline PbSnF4Solid State Ionics, 167
K. Ramarao, B. Babu, B. Babu, V. Veeraiah, S. Ramarao, K. Rajasekhar, A. Rao (2018)
Composition dependence of structural, magnetic and electrical properties of Co substituted magnesium ferritePhysica B-condensed Matter, 528
A. Omri, M. Bejar, E. Dhahri, M. Es‐Souni, M. Valente, M. Graça, L. Costa (2012)
Electrical conductivity and dielectric analysis of La0.75(Ca,Sr)0.25Mn0.85Ga0.15O3 perovskite compoundJournal of Alloys and Compounds, 536
Khalid Batoo, Shalendra Kumar, C. Lee, Alimuddin (2009)
Influence of Al doping on electrical properties of Ni–Cd nano ferritesCurrent Applied Physics, 9
K. Verma, Ashwini Kumar, D. Varshney (2012)
Dielectric relaxation behavior of AxCo1−xFe2O4 (A = Zn, Mg) mixed ferritesJournal of Alloys and Compounds, 526
M Nadeem (2002)
10.1016/S0009-2614(02)01662-7Chem. J. Phys. Lett., 366
Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations
Polycrystalline Mg0.5Co0.5Fe1.6Al0.4O4 ferrite was prepared using sol–gel method. This sample was characterized by powder X-ray diffraction (XRD), Scanning electron microscopy, and impedance spectroscopy. XRD analysis combined with the Rietveld refinement confirmed the cubic-spinel structure (SG: Fd3-m\documentclass[12pt]{minimal}\usepackage{amsmath}\usepackage{wasysym}\usepackage{amsfonts}\usepackage{amssymb}\usepackage{amsbsy}\usepackage{mathrsfs}\usepackage{upgreek}\setlength{\oddsidemargin}{-69pt}\begin{document}$$Fd\stackrel{-}{3}m$$\end{document}) for the prepared sample. Electrical conductivity obeying the Jonscher power law indicates that the prepared material exhibits semiconductor behavior, and the conduction process follows the “non-overlapping small polaron tunnelling, NSPT” model between neighbors’ sites. The behavior of dielectric constants such as permittivity and loss coefficient has been interpreted based on the Maxwell–Wagner’s theory of interfacial polarization. The curves of imaginary parts of impedance (Z″) and modulus (M″) show dielectric-relaxation phenomenon in the sample with activation energy near to that determined from the dc conductivity study. Nyquist plots (− Z″ vs. Z′) show a monotonic decrease in both grain resistance (Rg) and grain boundary resistance (Rgb) with increasing temperature such as Rgb ≫ Rg. This result confirms that the transport mechanism in Mg0.5Co0.5Fe1.6Al0.4O4 compound is governed by the grain boundaries effect.
Journal of Materials Science: Materials in Electronics – Springer Journals
Published: Apr 15, 2021
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.