Access the full text.
Sign up today, get DeepDyve free for 14 days.
L. Patschke, W. Barz, H. Grisebach (1966)
Stereospezifischer Einbau von (—)5.7.4′-Trihydroxyflavanon in Flavonoide und IsoflavoneZeitschrift für Naturforschung B, 21
G. Sottocasa, B. Kuylenstierna, L. Ernster, A. Bergstrand (1967)
AN ELECTRON-TRANSPORT SYSTEM ASSOCIATED WITH THE OUTER MEMBRANE OF LIVER MITOCHONDRIAThe Journal of Cell Biology, 32
L. Britsch, H. Grisebach (1985)
Improved preparation and assay of chalcone synthasePhytochemistry, 24
M. Hagmann, Werner Heller, H. Grisebach (1984)
Induction of phytoalexin synthesis in soybean. Stereospecific 3,9-dihydroxypterocarpan 6a-hydroxylase from elicitor-induced soybean cell cultures.European journal of biochemistry, 142 1
J. Schröder, W. Heller, K. Hahlbrock (1979)
Flavanone synthase: simple and rapid assay for the key enzyme of flavonoid biosynthesis.Plant Science Letters, 14
C. Coulson, D. King, A. Wiseman (1984)
Chemotherapeutic and agrochemical applications of cytochrome P-450 ligandsTrends in Biochemical Sciences, 9
Milton Zucker (1965)
Induction of Phenylalanine Deaminase by Light and its Relation to Chlorogenic Acid Synthesis in Potato Tuber Tissue.Plant physiology, 40 5
T. Omura, R. Sato (1964)
THE CARBON MONOXIDE-BINDING PIGMENT OF LIVER MICROSOMES. I. EVIDENCE FOR ITS HEMOPROTEIN NATURE.The Journal of biological chemistry, 239
J. Knabe (1974)
Methoden der enzymatischen Analyse, 3. Auflage. Herausgeb. v. H. U. Bergmeyer, LXXXI, 2353 Seiten in 2 Bänden. Preis DM 460,–, Verlag Chemie, Weinheim/Bergstr., 1974Archiv der Pharmazie, 308
G. Forkmann, W. Heller, H. Grisebach (1980)
Anthocyanin Biosynthesis in Flowers of Matthiola incana Flavanone 3-and Flavonoid 3′-HydroxylasesZeitschrift für Naturforschung C, 35
C. Schnarrenberger, A. Oeser, N. Tolbert (1971)
Development of Microbodies in Sunflower Cotyledons and Castor Bean Endosperm during Germination.Plant physiology, 48 5
T. Mabry, K. Markham, M. Thomas (1970)
The Systematic Identification of Flavonoids
L. Britsch, W. Heller, H. Grisebach (1981)
Conversion of Flavanone to Flavone, Dihydroflavonol and Flavonol with an Enzyme System from Cell Cultures of ParsleyZeitschrift für Naturforschung C, 36
J. McClure (1975)
Physiology and Functions of Flavonoids
(1960)
Zur Biogenese der Isoflavone: II. Mitt.: Über den Mechanismus der Umlagerung
K. Madyastha, C. Coscia (1979)
Detergent-solubilized NADPH-cytochrome c(P-450) reductase from the higher plant, Catharanthus roseus. Purification and characterization.The Journal of biological chemistry, 254 7
M. Hagmann, H. Grisebach (1984)
Enzymatic rearrangement of flavanone to isoflavoneFEBS Letters, 175
H. Diesperger, C. Müller, H. Sandermann (1974)
Rapid isolation of a plant microsomal fraction by Mg2+ — precipitationFEBS Letters, 43
Y. Imai, R. Sato (1967)
Conversion of P-450 to P-420 by neutral salts and some other reagents.European journal of biochemistry, 1 4
H. Bergmeyer (1962)
Methoden der enzymatischen Analyse
S. Adesanya, Melanie eill, M. Roberts (1984)
Induced and Constitutive Isoflavonoids in Phaseolus mungo L. LeguminosaeZeitschrift für Naturforschung C, 39
T. Mabry, K. Markham (1975)
Mass Spectrometry of Flavonoids
W. Barz, H. Grisebach (1966)
Über die Bedeutung von 3.5.7.4′-Tetrahydroxyflavanon (Dihydrokaempferol) für die Biosynthese von IsoflavonenZeitschrift für Naturforschung B, 21
The NADPH and oxygen‐dependent conversion of (2S)‐naringenin to genistein catalyzed by a microsomal preparation from elicitor‐treated soybean cell suspension cultures has been resolved into two steps. In the first step (2S)‐naringenin is converted to a product (P‐2) which yields genistein in a second step. The chemical behaviour of P‐2 and its ultraviolet and mass spectral data are consistent with a 2‐hydroxyisoflavanone structure. The conversion of (2S)‐naringenin to P‐2 requires NADPH, oxygen and cytochrome P‐450. The participation of cytochrome P‐450 was demonstrated by CO inhibition of the reaction and its partial reversal by light, and by inhibition with typical cytochrome P‐450 inhibitors. On a Percoll gradient the membrane fraction which catalyzes P‐2 formation coincides with marker enzymes for the endoplasmic reticulum and with the position of cytochrome P‐450. Enzymatic activity for conversion of P‐2 to genistein is mainly present in the supernatant of the 160000 x g fraction. This reaction, formally a dehydration, does not require NADPH or oxygen.
The Febs Journal – Wiley
Published: Mar 1, 1986
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.