Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Citrate and renal calculi: an update.

Citrate and renal calculi: an update. Citrate is an inhibitor of the crystallization of stone-forming calcium salts. Hypocitraturia, frequently encountered in patients with nephrolithiasis, is therefore an important risk factor for stone formation. Potassium citrate provides physiological and physicochemical correction and inhibits new stone formation, not only in hypocitraturic calcium nephrolithiasis but also in uric acid nephrolithiasis. Inhibition of stone recurrence has now been validated by a randomized trial. Ongoing research has disclosed additional causes of hypocitraturia (sodium excess, low intestinal alkali absorption, but not primary citrate malabsorption). Moreover, new insights on potassium citrate action have been shown, notably that some of absorbed citrate escapes oxidation and contributes to the citraturic response, that ingestion with a meal does not sacrifice physiological or physicochemical action, that orange juice mimics but does not completely duplicate its actions, that potassium citrate may have a beneficial bone-sparing effect, that it may reduce stone fragments following ESWL, and that danger of aluminum toxicity is not great in subjects with functioning kidneys. Finally, the research on potassium citrate has led to two promising products, calcium citrate as an optimum calcium supplement and potassium-magnesium citrate which may be superior to potassium citrate in the management of stone disease. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Mineral and electrolyte metabolism Pubmed

Citrate and renal calculi: an update.

Mineral and electrolyte metabolism , Volume 20 (6): -363 – Jul 18, 1995

Citrate and renal calculi: an update.


Abstract

Citrate is an inhibitor of the crystallization of stone-forming calcium salts. Hypocitraturia, frequently encountered in patients with nephrolithiasis, is therefore an important risk factor for stone formation. Potassium citrate provides physiological and physicochemical correction and inhibits new stone formation, not only in hypocitraturic calcium nephrolithiasis but also in uric acid nephrolithiasis. Inhibition of stone recurrence has now been validated by a randomized trial. Ongoing research has disclosed additional causes of hypocitraturia (sodium excess, low intestinal alkali absorption, but not primary citrate malabsorption). Moreover, new insights on potassium citrate action have been shown, notably that some of absorbed citrate escapes oxidation and contributes to the citraturic response, that ingestion with a meal does not sacrifice physiological or physicochemical action, that orange juice mimics but does not completely duplicate its actions, that potassium citrate may have a beneficial bone-sparing effect, that it may reduce stone fragments following ESWL, and that danger of aluminum toxicity is not great in subjects with functioning kidneys. Finally, the research on potassium citrate has led to two promising products, calcium citrate as an optimum calcium supplement and potassium-magnesium citrate which may be superior to potassium citrate in the management of stone disease.

Loading next page...
 
/lp/pubmed/citrate-and-renal-calculi-an-update-jD1Rja8DG7

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0378-0392
pmid
7783699

Abstract

Citrate is an inhibitor of the crystallization of stone-forming calcium salts. Hypocitraturia, frequently encountered in patients with nephrolithiasis, is therefore an important risk factor for stone formation. Potassium citrate provides physiological and physicochemical correction and inhibits new stone formation, not only in hypocitraturic calcium nephrolithiasis but also in uric acid nephrolithiasis. Inhibition of stone recurrence has now been validated by a randomized trial. Ongoing research has disclosed additional causes of hypocitraturia (sodium excess, low intestinal alkali absorption, but not primary citrate malabsorption). Moreover, new insights on potassium citrate action have been shown, notably that some of absorbed citrate escapes oxidation and contributes to the citraturic response, that ingestion with a meal does not sacrifice physiological or physicochemical action, that orange juice mimics but does not completely duplicate its actions, that potassium citrate may have a beneficial bone-sparing effect, that it may reduce stone fragments following ESWL, and that danger of aluminum toxicity is not great in subjects with functioning kidneys. Finally, the research on potassium citrate has led to two promising products, calcium citrate as an optimum calcium supplement and potassium-magnesium citrate which may be superior to potassium citrate in the management of stone disease.

Journal

Mineral and electrolyte metabolismPubmed

Published: Jul 18, 1995

There are no references for this article.