Access the full text.
Sign up today, get DeepDyve free for 14 days.
Lin Wu, J. Antonovics (1975)
ZINC AND COPPER UPTAKE BY AGROSTIS STOLONIFERA, TOLERANT TO BOTH ZINC AND COPPERNew Phytologist, 75
J. Walworth (1987)
Diagnosis of Mineral Disorders in PlantsSoil Science, 144
OW Nicolls, DMJ Provan, MM Cole, JS Tooms (1965)
Geobotany and geochemistry in mineral exploration in the Dugald River Area, Cloncurry District, 74
A. Sommer, C. Lipman (1926)
EVIDENCE ON THE INDISPENSABLE NATURE OF ZINC AND BORON FOR HIGHER GREEN PLANTS.Plant physiology, 1 3
E. Delhaize, T. Kataoka, D. Hebb, R. White, P. Ryan (2003)
Genes Encoding Proteins of the Cation Diffusion Facilitator Family That Confer Manganese Tolerance Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.009134.The Plant Cell Online, 15
A. Kabata-Pendias (1984)
Trace elements in soils and plants
R. Reeves, R. Macfarlane, R. Brooks (1983)
ACCUMULATION OF NICKEL AND ZINC BY WESTERN NORTH AMERICAN GENERA CONTAINING SERPENTINE‐TOLERANT SPECIESAmerican Journal of Botany, 70
G. Mullins, L. Sommers (1986)
Cadmium and zinc influx characteristics by intact corn (Zea mays L.) seedlingsPlant and Soil, 96
A. Friedland, A. Shaw (1990)
The movement of metals through soils and ecosystems.
Frédéric Verret, A. Gravot, P. Auroy, S. Prévéral, C. Forestier, Alain Vavasseur, P. Richaud (2005)
Heavy metal transport by AtHMA4 involves the N‐terminal degenerated metal binding domain and the C‐terminal His11 stretchFEBS Letters, 579
J. Bowen (1986)
Kinetics of zinc uptake by two rice cultivarsPlant and Soil, 94
R. Gregory, A. Bradshaw (1965)
HEAVY METAL TOLERANCE IN POPULATIONS OF AGROSTIS TENUIS SIBTH. AND OTHER GRASSESNew Phytologist, 64
M. White, R. Chaney, A. Decker (1979)
Role of Roots and Shoots of Soybeans in Tolerance to Excess Soil Zinc1Crop Science, 19
S. Whiting, J. Leake, S. McGrath, A. Baker (2000)
Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescensNew Phytologist, 145
R. and, A. Baker (1984)
STUDIES ON METAL UPTAKE BY PLANTS FROM SERPENTINE AND NON-SERPENTINE POPULATIONS OF THLASPI GOESINGENSE HÁLÁCSY (CRYCUFERAE).The New phytologist, 98 1
J. Coleman (1992)
Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins.Annual review of biochemistry, 61
V. Bert, M. Macnair, P. Laguerie, P. Saumitou-Laprade, D. Petit (2000)
Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae).The New phytologist, 146 2
AJM Baker (1987)
Metal tolerance, 106
Stéphanie Arrivault, Toralf Senger, U. Krämer (2006)
The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply.The Plant journal : for cell and molecular biology, 46 5
R. Smith, A. Bradshaw (1979)
THE USE OF METAL TOLERANT PLANT POPULATIONS FOR THE RECLAMATION OF METALLIFEROUS WASTESJournal of Applied Ecology, 16
C. Foy, R. Chaney, M. White (1978)
The Physiology of Metal Toxicity in PlantsAnnual Review of Plant Biology, 29
AR Craciun, M Courbot, F Bourgis, P Salis, P Saumitou‐Laprade, N Verbruggen (2006)
Comparative cDNA‐AFLP analysis of Cd‐tolerant and ‐sensitive genotypes derived from crosses between the Cd hyperaccumulator Arabidopsis halleri and Arabidopsis lyrata ssp. petraea, 57
M. Vázquez, J. Barceló, C. Poschenrieder, J. Mádico, P. Hatton, A. Baker, G. Cope (1992)
Localization of zinc and cadmium in Thlaspi caerulescens (Brassicaceae), a metallophyte that can hyperaccumulate both metalsJournal of Plant Physiology, 140
M. Broadley, Helen Bowen, Helen Cotterill, J. Hammond, M. Meacham, A. Mead, P. White (2004)
Phylogenetic variation in the shoot mineral concentration of angiosperms.Journal of experimental botany, 55 396
F. Assche, C. Cardinaels, H. Clijsters (1988)
Induction of enzyme capacity in plants as a result of heavy metal toxicity: dose-response relations in Phaseolus vulgaris L., treated with zinc and cadmium.Environmental pollution, 52 2
B. Tripathi, J. Gaur (2004)
Relationship between copper- and zinc-induced oxidative stress and proline accumulation in Scenedesmus sp.Planta, 219
D Blaudez, A Kohler, F Martin, D Sanders, M Chalot (2003)
Poplar Metal Tolerance Protein 1 confers zinc tolerance and is an oligomeric vacuolar zinc transporter with an essential leucine zipper motif, 15
N. Lehto, W. Davison, Hao Zhang, W. Tych (2006)
Analysis of Micro-Nutrient Behaviour in the Rhizosphere using a DGT Parameterised Dynamic Plant Uptake ModelPlant and Soil, 282
Claudia Blindauer, P. Sadler (2005)
How to hide zinc in a small protein.Accounts of chemical research, 38 1
J. Bowen (1973)
Kinetics of zinc absorption by excised roots of two sugarcane clonesPlant and Soil, 39
F. Robson, M. Costa, S. Hepworth, I. Vizir, M. Piñeiro, P. Reeves, J. Putterill, G. Coupland (2002)
Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants.The Plant journal : for cell and molecular biology, 28 6
B. Szalontai, L. Horváth, M. Debreczeny, M. Droppa, G. Horváth (1999)
Molecular rearrangements of thylakoids after heavy metal poisoning, as seen by Fourier transform infrared (FTIR) and electron spin resonance (ESR) spectroscopyPhotosynthesis Research, 61
T. Chase (1999)
Alcohol Dehydrogenases: Identification and Names for Gene FamiliesPlant Molecular Biology Reporter, 17
P. Kopponen, M. Utriainen, K. Lukkari, S. Suntioinen, L. Kärenlampi, S. Kärenlampi (2001)
Clonal differences in copper and zinc tolerance of birch in metal-supplemented soils.Environmental pollution, 112 1
L. Williams, J. Pittman, J. Hall (2000)
Emerging mechanisms for heavy metal transport in plants.Biochimica et biophysica acta, 1465 1-2
H. Schat, R. Vooijs, E. Kuiper (1996)
IDENTICAL MAJOR GENE LOCI FOR HEAVY METAL TOLERANCES THAT HAVE INDEPENDENTLY EVOLVED IN DIFFERENT LOCAL POPULATIONS AND SUBSPECIES OF SILENE VULGARISEvolution, 50
Z. Rengel, Matthew Wheal (1997)
Kinetic parameters of Zn uptake by wheat are affected by the herbicide chlorsulfuronJournal of Experimental Botany, 48
F. Meyer (1979)
Kritische Revision der „Thlaspi”-Arten Europas, Afrikas und Vorderasiens I. Geschichte, Morphologie und ChorologieFeddes Repertorium, 90
D. Beyersmann, H. Haase (2001)
Functions of zinc in signaling, proliferation and differentiation of mammalian cellsBiometals, 14
John Hammond, M. Broadley, David Craigon, Janet Higgins, Z. Emmerson, Henrik Townsend, Philip White, Sean May (2005)
Using genomic DNA-based probe-selection to improve the sensitivity of high-density oligonucleotide arrays when applied to heterologous speciesPlant Methods, 1
W. Mathys (1977)
The Role of Malate, Oxalate, and Mustard Oil Glucosides in the Evolution of Zinc‐Resistance in Herbage PlantsPhysiologia Plantarum, 40
I. Cakmak (2000)
Tansley Review No. 111: Possible roles of zinc in protecting plant cells from damage by reactive oxygen species.The New phytologist, 146 2
Elizabeth Colangelo, M. Guerinot (2006)
Put the metal to the petal: metal uptake and transport throughout plants.Current opinion in plant biology, 9 3
T. Khudsar, Mahmooduzzafar, Muhammad Iqbal, R. Sairam (2004)
Zinc-Induced Changes in Morpho-Physiological and Biochemical Parameters in Artemisia annuaBiologia Plantarum, 48
RL Chaney (1993)
Zinc in soil and plants.
Dominik Weiss, Dominik Weiss, T. Mason, Fang-Jie Zhao, Guy Kirk, Barry Coles, M. Horstwood (2004)
Isotopic discrimination of zinc in higher plants.The New phytologist, 165 3
J. Reyes, M. Muro-Pastor, F. Florencio (2004)
The GATA Family of Transcription Factors in Arabidopsis and Rice1Plant Physiology, 134
Hart, Norvell, Welch, Sullivan, Kochian (1998)
Characterization of zinc uptake, binding, and translocation in intact seedlings of bread and durum wheat cultivarsPlant physiology, 118 1
MR Macnair (1990)
Heavy metal tolerance in plants: evolutionary aspects.
R. Mills, G. Krijger, Paul Baccarini, J. Hall, L. Williams (2003)
Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass.The Plant journal : for cell and molecular biology, 35 2
S. Doncheva, Zlatimira Stoynova, V. Velikova (2001)
INFLUENCE OF SUCCINATE ON ZINC TOXICITY OF PEA PLANTSJournal of Plant Nutrition, 24
J. Baldwin, P. Nye, P. Tinker (1973)
Uptake of solutes by multiple root systems from soilPlant and Soil, 38
E. Eren, J. Argüello (2004)
Arabidopsis HMA2, a Divalent Heavy Metal-Transporting PIB-Type ATPase, Is Involved in Cytoplasmic Zn2+ Homeostasis1Plant Physiology, 136
Donggiun Kim, Jeffery Gustin, Brett Lahner, M. Persans, D. Baek, D. Yun, D. Salt (2004)
The plant CDF family member TgMTP1 from the Ni/Zn hyperaccumulator Thlaspi goesingense acts to enhance efflux of Zn at the plasma membrane when expressed in Saccharomyces cerevisiae.The Plant journal : for cell and molecular biology, 39 2
I. Cakmak (2002)
Plant nutrition research: Priorities to meet human needs for food in sustainable waysPlant and Soil, 247
V. Filatov, J. Dowdle, N. Smirnoff, B. Ford-Lloyd, H. Newbury, M. Macnair (2006)
Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulationMolecular Ecology, 15
I. Zelko, A. Lux, K. Czibula (2008)
Difference in the root structure of hyperaccumulator Thlaspi caerulescens and non-hyperaccumulator Thlaspi arvenseInternational Journal of Environment and Pollution, 33
Judith Mortel, Laia Villanueva, H. Schat, J. Kwekkeboom, S. Coughlan, P. Moerland, E. Themaat, M. Koornneef, M. Aarts (2006)
Large Expression Differences in Genes for Iron and Zinc Homeostasis, Stress Response, and Lignin Biosynthesis Distinguish Roots of Arabidopsis thaliana and the Related Metal Hyperaccumulator Thlaspi caerulescens1[W]Plant Physiology, 142
F. Zhao, Z. Shen, S. McGrath (1998)
Solubility of zinc and interactions between zinc and phosphorus in the hyperaccumulator Thlaspi caerulescensPlant Cell and Environment, 21
P. Meerts, Nathalie Isacker (1997)
Heavy metal tolerance and accumulation in metallicolous and non-metallicolous populations of Thlaspi caerulescens from continental EuropePlant Ecology, 133
Y. Dang, R. Dalal, D. Edwards, K. Tiller (1994)
Zinc buffer capacity of vertisolsSoil Research, 32
Yuanji Zhang, Liangjiang Wang (2005)
The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plantsBMC Evolutionary Biology, 5
W. Ernst, J. Verkleij, H. Schat (1992)
Metal tolerance in plantsPlant Biology, 41
Matthew Wheal, Z. Rengel (2004)
Chlorsulfuron reduces rates of zinc uptake by wheat seedlings from solution culturePlant and Soil, 188
G. Singh, M. Bhati (2003)
Mineral Toxicity and Physiological Functions in Tree Seedlings Irrigated with Effluents of Varying Chemistry in Sandy Soil of Dry RegionJournal of Environmental Science and Health, Part C, 21
K. McIntosh, P. Bonham‐Smith (2006)
Ribosomal protein gene regulation: what about plants?Botany, 84
Artak Ghandilyan, D. Vreugdenhil, M. Aarts (2006)
Progress in the genetic understanding of plant iron and zinc nutritionPhysiologia Plantarum, 126
M. Koch, K. Mummenhoff, H. Hurka (1998)
Systematics and evolutionary history of heavy metal tolerant Thlaspi caerulescens in Western Europe: evidence from genetic studies based on isozyme analysisBiochemical Systematics and Ecology, 26
Karen Browning (2004)
Plant translation initiation factors: it is not easy to be green.Biochemical Society transactions, 32 Pt 4
V. Demidchik, F. Maathuis (2007)
Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development.The New phytologist, 175 3
Cristiana Magalhães, D. Cardoso, C. Santos, R. Chaloub (2004)
PHYSIOLOGICAL AND PHOTOSYNTHETIC RESPONSES OF SYNECHOCYSTIS AQUATILIS F. AQUATILIS (CYANOPHYCEAE) TO ELEVATED LEVELS OF ZINC 1Journal of Phycology, 40
Z. Stoyanova, S. Doncheva (2002)
The effect of zinc supply and succinate treatment on plant growth and mineral uptake in pea plantBrazilian Journal of Plant Physiology, 14
R. Reid, J. Brookes, M. Tester, F. Smith (2004)
The mechanism of zinc uptake in plantsPlanta, 198
W. Maret (2005)
Zinc coordination environments in proteins determine zinc functions.Journal of trace elements in medicine and biology : organ of the Society for Minerals and Trace Elements, 19 1
U. Artetxe, J. García-Plazaola, A. Hernández, J. Becerril (2002)
Low light grown duckweed plants are more protected against the toxicity induced by Zn and CdPlant Physiology and Biochemistry, 40
L. Boawn, P. Rasmussen (1971)
Crop Response to Excessive Zinc Fertilization of Alkaline Soil1Agronomy Journal, 63
C. Bernard, N. Roosens, P. Czernic, M. Lebrun, N. Verbruggen (2004)
A novel CPx‐ATPase from the cadmium hyperaccumulator Thlaspi caerulescensFEBS Letters, 569
M. Vázquez, C. Poschenrieder, J. Barceló, A. Baker, P. Hatton, G. Cope (1994)
Compartmentation of Zinc in Roots and Leaves of the Zinc Hyperaccumulator Thlaspi caerulescens J & C PreslPlant Biology, 107
H. Marschner (1988)
Mineral Nutrition of Higher Plants
A. Assunção, B. Pieper, J. Vromans, P. Lindhout, M. Aarts, H. Schat (2006)
Construction of a genetic linkage map of Thlaspi caerulescens and quantitative trait loci analysis of zinc accumulation.The New phytologist, 170 1
J. Berg, Yigong Shi (1996)
The Galvanization of Biology: A Growing Appreciation for the Roles of ZincScience, 271
Arjun Tiwari, Pramod Kumar, Sanjay Singh, S. Ansari (2005)
Carbonic anhydrase in relation to higher plantsPhotosynthetica, 43
RJ Reid, JD Brookes, MA Tester, FA Smith (1996)
The mechanism of zinc uptake in plants. Characterisation of the low‐affinity system, 198
L. Symeonidis, T. McNeilly, A. Bradshaw (1985)
DIFFERENTIAL TOLERANCE OF THREE CULTIVARS OF AGROSTIS CAPILLARIS L. TO CADMIUM, COPPER, LEAD, NICKEL AND ZINCNew Phytologist, 101
L. Marquès, M. Cossegal, Stephanie Bodin, P. Czernic, M. Lebrun (2004)
Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens.The New phytologist, 164 2
B. Haines (2002)
Zincophilic root foraging in Thlaspi caerulescens.The New phytologist, 155 3
Y Dong, T Ogawa, D Lin, H‐J Koh, H Kamiunten, M Matsuo, S Cheng (2006)
Molecular mapping of quantitative trait loci for zinc toxicity in rice seedling (Oryza sativa L.), 95
M. Koch, K. Mummenhoff (2001)
Thlaspi s.str. (Brassicaceae) versus Thlaspi s.l.: morphological and anatomical characters in the light of ITS nrDNA sequence dataPlant Systematics and Evolution, 227
J. Parr, P. Marsh, J. Kla (1983)
Land treatment of hazardous wastes.
M. Guerinot, D. Salt (2001)
Fortified foods and phytoremediation. Two sides of the same coin.Plant physiology, 125 1
S. Bailey, Elinor Thompson, P. Nixon, P. Horton, C. Mullineaux, C. Robinson, N. Mann (2002)
A Critical Role for the Var2 FtsH Homologue of Arabidopsis thaliana in the Photosystem II Repair Cycle in Vivo *The Journal of Biological Chemistry, 277
E Lombi, FJ Zhao, SP McGrath, SD Young, GA Sacchi (2001)
Physiological evidence for a high‐affinity cadmium transporter highly expressed in a, 149
F. Chaudhry, J. Loneragan (1972)
Zinc Absorption by Wheat Seedlings and the Nature of its Inhibition by Alkaline Earth CationsJournal of Experimental Botany, 23
F. Zhao, R. Hamon, E. Lombi, M. Mclaughlin, S. McGrath (2002)
Characteristics of cadmium uptake in two contrasting ecotypes of the hyperaccumulator Thlaspi caerulescens.Journal of experimental botany, 53 368
Michael Weber, E. Harada, C. Vess, E. Roepenack-Lahaye, S. Clemens (2004)
Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors.The Plant journal : for cell and molecular biology, 37 2
W. Lindsay (1979)
Chemical equilibria in soils
J. Bowen (1987)
Physiology of genotypic differences in zinc and copper uptake in rice and tomatoPlant and Soil, 99
J. Ma, D. Ueno, F. Zhao, S. McGrath (2005)
Subcellular localisation of Cd and Zn in the leaves of a Cd-hyperaccumulating ecotype of Thlaspi caerulescensPlanta, 220
D. Salt, R. Prince, A. Baker, I. Raskin, I. Pickering (1999)
Zinc Ligands in the Metal Hyperaccumulator Thlaspi caerulescens As Determined Using X-ray Absorption SpectroscopyEnvironmental Science & Technology, 33
Xiaoe Yang, X. Long, W. Ni, Chenxin Fu (2002)
Sedum alfredii H: A new Zn hyperaccumulating plant first found in ChinaChinese Science Bulletin, 47
C. Soares, P. Grazziotti, J. Siqueira, J. Carvalho, F. Moreira (2001)
Toxidez de zinco no crescimento e nutrição de Eucalyptus maculata e Eucalyptus urophylla em solução nutritivaPesquisa Agropecuaria Brasileira, 36
M. Macnair (1993)
The genetics of metal tolerance in vascular plants.The New phytologist, 124 4
H. Schat, M. Llugany, R. Vooijs, J. Hartley-Whitaker, P. Bleeker (2002)
The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes.Journal of experimental botany, 53 379
R. Graham, Ross Welch, H. Bouis (2001)
Addressing micronutrient malnutrition through enhancing the nutritional quality of staple foods: Principles, perspectives and knowledge gapsAdvances in Agronomy, 70
J. Verkleij, P. Koevoets, M. Blake-Kalff, A. Chardonnens (1998)
Evidence for an important role of the tonoplast in the mechanism of naturally selected zinc tolerance in Silene vulgarisJournal of Plant Physiology, 153
J. Weckx, H. Clijsters (1997)
Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgarisPlant Physiology and Biochemistry, 35
Xiaodong Cheng, R. Collins, Xing Zhang (2005)
Structural and sequence motifs of protein (histone) methylation enzymes.Annual review of biophysics and biomolecular structure, 34
MM Lasat, LV Kochian (2000)
Phytoremediation of contaminated soil and water.
R. Brooks (1998)
Plants that Hyperaccumulate Heavy Metals
E. Mateos-Naranjo, S. Redondo-Gómez, J. Cambrollé, T. Luque, M. Figueroa (2008)
Growth and photosynthetic responses to zinc stress of an invasive cordgrass, Spartina densiflora.Plant biology, 10 6
J. Bowen (1981)
Kinetics of active uptake of boron, zinc, copper and manganese in barley and sugarcaneJournal of Plant Nutrition, 3
A. Assunção, W. Bookum, H. Nelissen, R. Vooijs, H. Schat, W. Ernst (2003)
A cosegregation analysis of zinc (Zn) accumulation and Zn tolerance in the Zn hyperaccumulator Thlaspi caerulescens.The New phytologist, 159 2
G. Lorimer (1981)
The Carboxylation and Oxygenation of Ribulose 1,5-Bisphosphate: The Primary Events in Photosynthesis and PhotorespirationAnnual Review of Plant Biology, 32
J. Pearson, Z. Rengel, C. Jenner, R. Graham (1995)
Transport of zinc and manganese to developing wheat grainsPhysiologia Plantarum, 95
F. Assche, H. Clijsters (1986)
Inhibition of photosynthesis in Phaseolus vulgaris by treatment with toxic concentrations of zinc: effects on electron transport and photophosphorylationPhysiologia Plantarum, 66
S. Ebbs, L. Kochian (1997)
Toxicity of Zinc and Copper to Brassica Species: Implications for PhytoremediationJournal of Environmental Quality, 26
DH Lloyd‐Thomas (1995)
PhD thesis.
M. Wójcik, E. Skórzyńska-Polit, A. Tukiendorf (2006)
Organic Acids Accumulation and Antioxidant Enzyme Activities in Thlaspi caerulescens under Zn and Cd StressPlant Growth Regulation, 48
E Delhaize, E Kataoka, DM Hebb, RG White, PR Ryan (2003)
Genes encoding proteins of the cation diffusion facilitator family that confer manganese tolerance, 15
Marjo Tuomainen, N. Nunan, S. Lehesranta, A. Tervahauta, V. Hassinen, H. Schat, K. Koistinen, S. Auriola, J. McNicol, S. Kärenlampi (2006)
Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessionsPROTEOMICS, 6
F. Chaudhry, J. Loneragan (1972)
Zinc Absorption by Wheat Seedlings: II. Inhibition by Hydrogen Ions and by Micronutrient Cations 1Soil Science Society of America Journal, 36
Mireille Molitor, C. Dechamps, W. Gruber, P. Meerts (2004)
Thlaspi caerulescens on nonmetalliferous soil in Luxembourg: ecological niche and genetic variation in mineral element composition.The New phytologist, 165 2
U. Krämer (2005)
Phytoremediation: novel approaches to cleaning up polluted soils.Current opinion in biotechnology, 16 2
K. Vogel-Mikuš, D. Drobne, M. Regvar (2005)
Zn, Cd and Pb accumulation and arbuscular mycorrhizal colonisation of pennycress Thlaspi praecox Wulf. (Brassicaceae) from the vicinity of a lead mine and smelter in Slovenia.Environmental pollution, 133 2
J. Antonovics (1968)
Evolution in closely adjacent plant populations V. Evolution of self-fertilityHeredity, 23
I. Arduini, D. Godbold, A. Onnis (1994)
Cadmium and copper change root growth and morphology of Pinus pinea and Pinus pinaster seedlingsPhysiologia Plantarum, 92
C. Kaya, D. Higgs, A. Burton (2000)
Plant growth, phosphorus nutrition, and acid phosphatase enzyme activity in three tomato cultivars grown hydroponically at different zinc concentrationsJournal of Plant Nutrition, 23
T. Flowers, A. Yeo (1992)
Solute Transport in Plants
M. Brar, G. Sekhon (1976)
Interaction of zinc with other micronutrient cationsPlant and Soil, 45
E. Earley (1943)
Minor Element Studies with Soybeans: I. Varietal Reaction to Concentrations of Zinc in Excess of the Nutritional Requirement 1Agronomy Journal, 35
J. White, R. Zasoski (1999)
Mapping soil micronutrientsField Crops Research, 60
Bekir Ulker, I. Somssich (2004)
WRKY transcription factors: from DNA binding towards biological function.Current opinion in plant biology, 7 5
F. Meyer (1973)
Conspectus der „Thlaspi”-Arten Europas, Afrikas und VorderasiensFeddes Repertorium, 84
P. Morris (2001)
MAP kinase signal transduction pathways in plants.The New phytologist, 151 1
G. Hacisalihoglu, L. Kochian (2003)
How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants.The New phytologist, 159 2
P. White, S. Whiting, A. Baker, M. Broadley (2002)
Does zinc move apoplastically to the xylem in roots of Thlaspi caerulescensNew Phytologist, 153
J. Nriagu (1996)
A History of Global Metal PollutionScience, 272
B. Zaal, L. Neuteboom, J. Pinas, A. Chardonnens, H. Schat, J. Verkleij, P. Hooykaas (1999)
Overexpression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation.Plant physiology, 119 3
G. Hacisalihoglu, Jonathan Hart, L. Kochian (2001)
High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat.Plant physiology, 125 1
Kota Saito, J. Murai, H. Kajiho, K. Kontani, H. Kurosu, T. Katada (2002)
A Novel Binding Protein Composed of Homophilic Tetramer Exhibits Unique Properties for the Small GTPase Rab5*The Journal of Biological Chemistry, 277
Chardonnens, Koevoets, van A, Schat, Verkleij (1999)
Properties of enhanced tonoplast zinc transport in naturally selected zinc-tolerant silene vulgarisPlant physiology, 120 3
Claudia Cosio, L. Desantis, B. Frey, Saliou Diallo, C. Keller (2005)
Distribution of cadmium in leaves of Thlaspi caerulescens.Journal of experimental botany, 56 412
M. Bertrand, I. Poirier (2005)
Photosynthetic organisms and excess of metalsPhotosynthetica, 43
P Mazé (1915)
Détermination des éléments minéraux rares nécessaires au développement du maïs, 160
D. Rigola, M. Fiers, E. Vurro, M. Aarts (2006)
The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis.The New phytologist, 170 4
Nicole Clay, T. Nelson (2005)
The Recessive Epigenetic swellmap Mutation Affects the Expression of Two Step II Splicing Factors Required for the Transcription of the Cell Proliferation Gene STRUWWELPETER and for the Timing of Cell Cycle Arrest in the Arabidopsis LeafThe Plant Cell Online, 17
N. Roosens, N. Verbruggen, P. Meerts, P. Ximénez-Embún, J. Smith (2003)
Natural variation in cadmium tolerance and its relationship to metal hyperaccumulation for seven populations of Thlaspi caerulescens from western EuropePlant Cell and Environment, 26
W. Miller, W. Fee (1983)
Distribution of cadmium, zinc, copper, and lead in soils of industrial northwestern IndianaJournal of Environmental Quality, 12
S. Gong, L. Barrie (2005)
Trends of heavy metal components in the Arctic aerosols and their relationship to the emissions in the Northern Hemisphere.The Science of the total environment, 342 1-3
P. White (2001)
The pathways of calcium movement to the xylem.Journal of experimental botany, 52 358
J. Escarré, C. Lefébvre, W. Gruber, M. Leblanc, J. Lepart, Y. Rivière, B. Delay (2000)
Zinc and cadmium hyperaccumulation by Thlaspi caerulescens from metalliferous and nonmetalliferous sites in the Mediterranean area: implications for phytoremediation.The New phytologist, 145 3
H. Küpper, F. Küpper, M. Spiller (1996)
Environmental relevance of heavy metal-substituted chlorophylls using the example of water plantsJournal of Experimental Botany, 47
Yoshihiro Kobae, T. Uemura, Masa Sato, M. Ohnishi, T. Mimura, T. Nakagawa, M. Maeshima (2004)
Zinc transporter of Arabidopsis thaliana AtMTP1 is localized to vacuolar membranes and implicated in zinc homeostasis.Plant & cell physiology, 45 12
Michelle Caisse, J. Antonovics (1978)
Evolution in closely adjacent plant populationsHeredity, 40
M. Piñeros, J. Shaff, L. Kochian (1998)
Development, Characterization, and Application of a Cadmium-Selective Microelectrode for the Measurement of Cadmium Fluxes in Roots of Thlaspi Species and WheatPlant physiology, 116 4
M. Bonnet, Olivier Camarès, P. Veisseire (2000)
Effects of zinc and influence of Acremonium lolii on growth parameters, chlorophyll a fluorescence and antioxidant enzyme activities of ryegrass (Lolium perenne L. cv Apollo).Journal of experimental botany, 51 346
N. Higinbotham, D. Hoagland (1945)
Lectures on the Inorganic Nutrition of Plants.American Midland Naturalist, 33
M. Lasat, A. Baker, L. Kochian (1996)
Physiological Characterization of Root Zn2+ Absorption and Translocation to Shoots in Zn Hyperaccumulator and Nonaccumulator Species of Thlaspi, 112
BJ Alloway (2004)
Zinc in soils and crop nutrition.
F. Assche, R. Ceulemans, H. Clijsters (1980)
Zinc mediated effects on leaf CO2 diffusion conductances and net photosynthesis in Phaseolus vulgaris L.Photosynthesis Research, 1
M. Macnair, A. Shaw (1990)
The genetics of metal tolerance in natural populations.
V. Bert, I. Bonnin, P. Saumitou-Laprade, P. Laguérie, D. Petit (2002)
Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations?The New phytologist, 155 1
M. Macnair, Valérie Bert, Valérie Bert, S. Huitson, P. Saumitou-Laprade, Daniel Petit (1999)
Zinc tolerance and hyperaccumulation are genetically independent charactersProceedings of the Royal Society of London. Series B: Biological Sciences, 266
A. Baker, R. Brooks (1989)
TERRESTRIAL HIGHER PLANTS WHICH HYPERACCUMULATE METALLIC ELEMENTS. A REVIEW OF THEIR DISTRIBUTION, ECOLOGY AND PHYTOCHEMISTRY, 1
A. Gravot, Aurélie Lieutaud, Frédéric Verret, P. Auroy, Alain Vavasseur, P. Richaud (2004)
AtHMA3, a plant P1B‐ATPase, functions as a Cd/Pb transporter in yeastFEBS Letters, 561
W. Ernst, H. Schat, J. Verkleij (1990)
Evolutionary biology of metal resistance in Silene vulgaris., 4
J. Antonovics (1972)
Population dynamics of the grass Anthoxanthum odoratum on a zinc mine.Journal of Ecology, 60
MS Brar, GS Sekhon (1976)
Interaction of zinc with other micronutrient cations. I. Effect of copper on zinc65 absorption by wheat seedlings and its translocation within the plants, 45
C. Schwartz, J. Morel, Stéphane Saumier, S. Whiting, A. Baker (2004)
Root development of the Zinc-hyperaccumulator plant Thlaspi caerulescens as affected by metal origin, content and localization in soilPlant and Soil, 208
M. Persans, Ken Nieman, D. Salt (2001)
Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingenseProceedings of the National Academy of Sciences of the United States of America, 98
I. Talke, M. Hanikenne, U. Krämer (2006)
Zinc-Dependent Global Transcriptional Control, Transcriptional Deregulation, and Higher Gene Copy Number for Genes in Metal Homeostasis of the Hyperaccumulator Arabidopsis halleri1[W]Plant Physiology, 142
H. Zhang, S. Young (2005)
Characterizing the availability of metals in contaminated soils. IISoil Use and Management, 21
B. Frey, C. Keller, K. Zierold, R. Schulin (2000)
Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescensPlant Cell and Environment, 23
G. Ali, P. Srivastava, M. Iqbal (1999)
Morphogenic and biochemical responses of Bacopa monniera cultures to zinc toxicityPlant Science, 143
M. Koch, I. Al‐Shehbaz (2004)
Taxonomic and Phylogenetic Evaluation of the American “Thlaspi” Species: Identity and Relationship to the Eurasian Genus Noccaea (Brassicaceae), 29
Stacy Taylor, M. Macnair (2006)
Within and between population variation for zinc and nickel accumulation in two species of Thlaspi (Brassicaceae).The New phytologist, 169 3
B. Knight, F. Zhao, S. McGrath, Zongzhuan Shen (1997)
Zinc and cadmium uptake by the hyperaccumulator Thlaspi caerulescens in contaminated soils and its effects on the concentration and chemical speciation of metals in soil solutionPlant and Soil, 197
W. Veltrup (1978)
Characteristics of Zinc Uptake by Barley RootsPhysiologia Plantarum, 42
I Cakmak (2004)
Identification and correction of widespread zinc deficiency in Turkey – a success story (a NATO‐Science for Stability Project), 552
A. Assunção, W. Bookum, H. Nelissen, R. Vooijs, H. Schat, W. Ernst (2003)
Differential metal-specific tolerance and accumulation patterns among Thlaspi caerulescens populations originating from different soil types.The New phytologist, 159 2
P. Bekiaroglou, S. Karataglis (2002)
The Effect of Lead and Zinc on Mentha spicataJournal of Agronomy and Crop Science, 188
BJ Alloway (1995)
Heavy metals in soils
H. Sakamoto, K. Maruyama, Y. Sakuma, T. Meshi, M. Iwabuchi, K. Shinozaki, K. Yamaguchi-Shinozaki (2004)
Arabidopsis Cys2/His2-Type Zinc-Finger Proteins Function as Transcription Repressors under Drought, Cold, and High-Salinity Stress Conditions1Plant Physiology, 136
M. Olczak, B. Morawiecka, W. Wątorek (2003)
Plant purple acid phosphatases - genes, structures and biological function.Acta biochimica Polonica, 50 4
Y. Homma, H. Hirata (1984)
Kinetics of cadmium and zinc absorption by rice seedling rootsSoil Science and Plant Nutrition, 30
M. Regvar, Katarina Vogel, Nina Irgel, T. Wraber, U. Hildebrandt, Petra Wilde, H. Bothe (2003)
Colonization of pennycresses (Thlaspi spp.) of the Brassicaceae by arbuscular mycorrhizal fungi.Journal of plant physiology, 160 6
K. Rao, T. Sresty (2000)
Antioxidative parameters in the seedlings of pigeonpea (Cajanus cajan (L.) Millspaugh) in response to Zn and Ni stresses.Plant science : an international journal of experimental plant biology, 157 1
(2006)
Journal of Experimental Botany Advance Access published August 17, 2006 Journal of Experimental Botany, Page 1 of 17
Z. Shen, F. Zhao, S. McGrath (1997)
Uptake and transport of zinc in the hyperaccumulator Thlaspi caerulescens and the non‐hyperaccumulator Thlaspi ochroleucumPlant Cell and Environment, 20
H. Harmens, P. Hartog, W. Bookum, J. Verkleij (1993)
Increased Zinc Tolerance in Silene vulgaris (Moench) Garcke Is Not Due to Increased Production of Phytochelatins, 103
Gary Brown, K. Brinkmann (1992)
Heavy metal tolerance in Festuca ovina L. from contaminated sites in the Eifel Mountains, GermanyPlant and Soil, 143
B. Hille (2001)
Ionic channels of excitable membranes
Claudia Andreini, L. Banci, I. Bertini, A. Rosato (2006)
Counting the zinc-proteins encoded in the human genome.Journal of proteome research, 5 1
Caryn Outten, and O'Halloran (2001)
Femtomolar Sensitivity of Metalloregulatory Proteins Controlling Zinc HomeostasisScience, 292
M. White, R. Chaney, A. Decker (1979)
Differential Cultivar Tolerance in Soybean to Phytotoxic Levels of Soil Zn. II. Range of Zn Additions and the Uptake and Translocation of Zn, Mn, Fe, and P1Agronomy Journal, 71
A. Assunção, P. Martins, S. Folter, R. Vooijs, H. Schat, M. Aarts (2001)
Elevated expression of metal transporter genes in three accessions of the metal hyperaccumulator Thlaspi caerulescensPlant Cell and Environment, 24
B. Bar-Yosef, S. Fishman, H. Talpaz (1980)
A Model of Zinc Movement to Single Roots in Soils
X. Qian, T. Eguchi, S. Yoshida, J. Chikushi (2005)
Analytical model for zinc uptake by root system of Thlaspi caerulescensJournal of The Faculty of Agriculture Kyushu University, 50
H. Frérot, C. Petit, C. Lefébvre, W. Gruber, C. Collin, J. Escarré (2002)
Zinc and cadmium accumulation in controlled crosses between metallicolous and nonmetallicolous populations of Thlaspi caerulescens (Brassicaceae)
G. Ali, P. Srivastava, M. Iqbal (2000)
Influence of Cadmium and Zinc on Growth and Photosynthesis of Bacopa monniera Cultivated in vitroBiologia Plantarum, 43
Z. Rengel (2001)
GENOTYPIC DIFFERENCES IN MICRONUTRIENT USE EFFICIENCY IN CROPSCommunications in Soil Science and Plant Analysis, 32
A. Pollard, Keri Powell, F. Harper, J. Smith (2002)
The Genetic Basis of Metal Hyperaccumulation in PlantsCritical Reviews in Plant Sciences, 21
K. Searcy, D. Mulcahy (1985)
The parallel expression of metal tolerance in pollen and sporophytes of Silene dioica (L.) Clairv., S. alba (mill.) krause and Mimulus guttatus DCTheoretical and Applied Genetics, 69
O. Ouariti, H. Gouia, M. Ghorbal (1997)
Responses of bean and tomato plants to cadmium : Growth, mineral nutrition, and nitrate reductionPlant Physiology and Biochemistry, 35
W. Johnston, J. Proctor (2004)
A comparative study of metal levels in plants from two contrasting lead-mine sitesPlant and Soil, 46
MA Grusak, I Cakmak (2005)
Plant nutritional genomics
Yanjun Dong, T. Ogawa, D. Lin, H. Koh, H. Kamiunten, M. Matsuo, Shihua Cheng (2006)
Molecular mapping of quantitative trait loci for zinc toxicity tolerance in rice seedling (Oryza sativa L.)Field Crops Research, 95
G. Santa-María, D. Cogliatti (1998)
The regulation of zinc uptake in wheat plantsPlant Science, 137
B. Sattelmacher (2001)
The apoplast and its significance for plant mineral nutrition.The New phytologist, 149 2
G. Sarret, P. Saumitou-Laprade, V. Bert, O. Proux, J. Hazemann, A. Traverse, M. Marcus, A. Manceau (2002)
Forms of Zinc Accumulated in the HyperaccumulatorArabidopsis halleri 1Plant Physiology, 130
D. Callahan, A. Baker, S. Kolev, A. Wedd (2005)
Metal ion ligands in hyperaccumulating plantsJBIC Journal of Biological Inorganic Chemistry, 11
N. Mallick, F. Mohn (2003)
Use of chlorophyll fluorescence in metal-stress research: a case study with the green microalga Scenedesmus.Ecotoxicology and environmental safety, 55 1
H. Küpper, F. Küpper, M. Spiller (1998)
In situ detection of heavy metal substituted chlorophylls in water plantsPhotosynthesis Research, 58
A. Baker (1981)
ACCUMULATORS AND EXCLUDERS ?STRATEGIES IN THE RESPONSE OF PLANTS TO HEAVY METALSJournal of Plant Nutrition, 3
L. Williams, R. Mills (2005)
P(1B)-ATPases--an ancient family of transition metal pumps with diverse functions in plants.Trends in plant science, 10 10
K. Mummenhoff, A. Franzke, M. Koch (1997)
Molecular data reveal convergence in fruit characters used in the classification of Thlaspi s. l. (Brassicaceae)Botanical Journal of the Linnean Society, 125
K. Searcy, D. Mulcahy (1985)
POLLEN TUBE COMPETITION AND SELECTION FOR METAL TOLERANCE IN SILENE DIOICA (CARYOPHYLLACEAE) AND MIMULUS GUTTATUS (SCROPHULARIACEAE)American Journal of Botany, 72
A. Ducousso, D. Petit, M. Valero, P. Vernet (1990)
Genetic variation between and within populations of a perennial grass: Arrhenatherum elatiusHeredity, 65
J. Kennedy, L. Lloyd (1994)
Enzyme nomenclature — Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology: Academic Press Ltd, London, UK, 1992. xiii + 862 pp. Price £40.00. ISBN 0-12-227165-3Carbohydrate Polymers, 23
R. Reeves, C. Schwartz, J. Morel, J. Edmondson (2001)
Distribution and Metal-Accumulating Behavior of Thlaspi caerulescens and Associated Metallophytes in FranceInternational Journal of Phytoremediation, 3
R. Edwards, D. Dixon (2005)
Plant glutathione transferases.Methods in enzymology, 401
D. Hussain, Michael Haydon, Yuwen Wang, E. Wong, S. Sherson, J. Young, J. Camakaris, J. Harper, C. Cobbett (2004)
P-Type ATPase Heavy Metal Transporters with Roles in Essential Zinc Homeostasis in ArabidopsisThe Plant Cell Online, 16
M. Ciscato, J. Vangronsveld, R. Valcke (1999)
Effects of Heavy Metals on the Fast Chlorophyll Fluorescence Induction Kinetics of Photosystem II: a Comparative StudyZeitschrift für Naturforschung C, 54
R. Hobbs, B. Streit (1986)
Heavy metal concentrations in plants growing on a copper mine spoil in the Grand Canyon, ArizonaAmerican Midland Naturalist, 115
F. Skoog (1940)
RELATIONSHIPS BETWEEN ZINC AND AUXIN IN THE GROWTH OF HIGHER PLANTSAmerican Journal of Botany, 27
S. Whiting, M. Broadley, P. White (2003)
Applying a solute transfer model to phytoextraction: Zinc acquisition by Thlaspi caerulescensPlant and Soil, 249
N. Barrow (1993)
Mechanisms of Reaction of Zinc with Soil and Soil Components
J. Hart, Ross Welch, W. Norvell, L. Kochian (2002)
Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings.Physiologia plantarum, 116 1
B. Haslett, R. Reid, Z. Rengel (2001)
Zinc Mobility in Wheat: Uptake and Distribution of Zinc Applied to Leaves or RootsAnnals of Botany, 87
H. Zha, R. Jiang, F. Zhao, R. Vooijs, H. Schat, J. Barker, S. McGrath (2004)
Co-segregation analysis of cadmium and zinc accumulation in Thlaspi caerulescens interecotypic crosses.The New phytologist, 163 2
B. Davies (1993)
Radish as an indicator plant for derelict land: Uptake of zinc at toxic concentrationsCommunications in Soil Science and Plant Analysis, 24
S. Yanagisawa (2004)
Dof domain proteins: plant-specific transcription factors associated with diverse phenomena unique to plants.Plant & cell physiology, 45 4
M. Ingrouille, N. Smirnoff (1986)
THLASPI CAERULESCENS J. & C. PRESL. (T. ALPESTRE L.) IN BRITAIN.The New phytologist, 102 1
R. Graham, J. Ascher, Simon Hynes (1992)
Selecting zinc-efficient cereal genotypes for soils of low zinc statusPlant and Soil, 146
D. Dräger, Anne-Garlonn Desbrosses-Fonrouge, C. Krach, A. Chardonnens, R. Meyer, P. Saumitou-Laprade, U. Krämer (2004)
Two genes encoding Arabidopsis halleri MTP1 metal transport proteins co-segregate with zinc tolerance and account for high MTP1 transcript levels.The Plant journal : for cell and molecular biology, 39 3
A. López-Millán, D. Ellis, M. Grusak (2005)
Effect of zinc and manganese supply on the activities of superoxide dismutase and carbonic anhydrase in Medicago truncatula wild type and raz mutant plantsPlant Science, 168
Gü Inan, Quan Zhang, Pinghua Li, Zenglan Wang, Ziyi Cao, Hui Zhang, Changqing Zhang, Tanya Quist, S. Goodwin, Jianhua Zhu, Huazhong Shi, B. Damsz, T. Charbaji, Qingqiu Gong, Shisong Ma, Mark Fredricksen, D. Galbraith, M. Jenks, D. Rhodes, P. Hasegawa, H. Bohnert, R. Joly, R. Bressan, Jian‐Kang Zhu, J. Z (2004)
Salt Cress. A Halophyte and Cryophyte Arabidopsis Relative Model System and Its Applicability to Molecular Genetic Analyses of Growth and Development of Extremophiles1Plant Physiology, 135
W. Peer, Mehrzad Mamoudian, Brett Lahner, R. Reeves, A. Murphy, D. Salt (2003)
Identifying model metal hyperaccumulating plants: germplasm analysis of 20 Brassicaceae accessions from a wide geographical area.The New phytologist, 159 2
R. Alscher, J. Donahue, C. Cramer (1997)
Reactive oxygen species and antioxidants: Relationships in green cellsPhysiologia Plantarum, 100
F. Chaudhry, J. Loneragan (1972)
Zinc Absorption by Wheat Seedlings: I. Inhibition by Macronutrient Ions in Short-Term Experiments and its Relevance to Long-Term Zinc Nutrition1Soil Science Society of America Journal, 36
A. Schützendübel, A. Polle (2002)
Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization.Journal of experimental botany, 53 372
J. Hall (2002)
Cellular mechanisms for heavy metal detoxification and tolerance.Journal of experimental botany, 53 366
RD Reeves, AJM Baker (2000)
Phytoremediation of toxic metals: using plants to clean up the environment
R. Cox, T. Hutchinson (1980)
MULTIPLE METAL TOLERANCES IN THE GRASS DESCHAMPSIA CESPITOSA (L.) BEAUV. FROM THE SUDBURY SMELTING AREANew Phytologist, 84
Frédéric Verret, A. Gravot, P. Auroy, N. Leonhardt, Pascale David, L. Nussaume, Alain Vavasseur, P. Richaud (2004)
Overexpression of AtHMA4 enhances root‐to‐shoot translocation of zinc and cadmium and plant metal toleranceFEBS Letters, 576
R. Chaney (1983)
Plant uptake of inorganic waste constituents
K. Hantke (2005)
Bacterial zinc uptake and regulators.Current opinion in microbiology, 8 2
R. Reeves (1988)
Nickel and zinc accumulation by species of Thlaspi L., Cochlearia L., and other genera of the Brassicaceae.Taxon, 37
D. Baccio, S. Kopriva, L. Sebastiani, H. Rennenberg (2005)
Does glutathione metabolism have a role in the defence of poplar against zinc excess?The New phytologist, 167 1
K. Yamasaki, T. Kigawa, M. Inoue, M. Tateno, T. Yamasaki, T. Yabuki, M. Aoki, Eiko Seki, T. Matsuda, Emi Nunokawa, Y. Ishizuka, T. Terada, M. Shirouzu, T. Osanai, A. Tanaka, M. Seki, K. Shinozaki, S. Yokoyama (2004)
A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors.Journal of molecular biology, 337 1
M. Macnair (2003)
The hyperaccumulation of metals by plantsAdvances in Botanical Research, 40
D. Auld (2001)
Zinc coordination sphere in biochemical zinc sitesBiometals, 14
H. Küpper, A. Mijovilovich, W. Meyer-klaucke, P. Kroneck (2004)
Tissue- and Age-Dependent Differences in the Complexation of Cadmium and Zinc in the Cadmium/Zinc Hyperaccumulator Thlaspi caerulescens (Ganges Ecotype) Revealed by X-Ray Absorption Spectroscopy1[w]Plant Physiology, 134
H. Schat, R. Vooijs (1997)
Multiple tolerance and co-tolerance to heavy metals in Silene vulgaris: a co-segregation analysis.The New phytologist, 136 3
Anne-Garlonn Desbrosses-Fonrouge, Katrin Voigt, A. Schröder, Stéphanie Arrivault, S. Thomine, U. Krämer (2005)
Arabidopsis thaliana MTP1 is a Zn transporter in the vacuolar membrane which mediates Zn detoxification and drives leaf Zn accumulationFEBS Letters, 579
A. Papoyan, L. Kochian (2004)
Identification of Thlaspi caerulescens Genes That May Be Involved in Heavy Metal Hyperaccumulation and Tolerance. Characterization of a Novel Heavy Metal Transporting ATPase1Plant Physiology, 136
W. Schmid, H. Haag, E. Epstein (1965)
Absorption of Zinc by Excised Barley RootsPhysiologia Plantarum, 18
M. Wissuwa, A. Ismail, S. Yanagihara (2006)
Effects of Zinc Deficiency on Rice Growth and Genetic Factors Contributing to TolerancePlant Physiology, 142
F. Zhao, E. Lombi, T. Breedon, S. McGrath (2000)
Zinc hyperaccumulation and cellular distribution in Arabidopsis halleriPlant Cell and Environment, 23
C. Dechamps, N. Roosens, Céline Hotte, P. Meerts (2005)
Growth and mineral element composition in two ecotypes of Thlaspi caerulescens on Cd contaminated soilPlant and Soil, 273
P. White (1998)
Calcium Channels in the Plasma Membrane of Root CellsAnnals of Botany, 81
A. López-Millán, D. Ellis, M. Grusak (2004)
Identification and Characterization of Several New Members of the ZIP Family of Metal Ion Transporters in Medicago TruncatulaPlant Molecular Biology, 54
A. Klug (1999)
Zinc finger peptides for the regulation of gene expression.Journal of molecular biology, 293 2
Martin Hodson, P. White, A. Mead, M. Broadley (2005)
Phylogenetic variation in the silicon composition of plants.Annals of botany, 96 6
Carroll, J. Loneragan (1968)
Response of plant species to concentrations of zinc in solution. I. Growth and zinc content of plantsCrop & Pasture Science, 19
S. Young, H. Zhang, A. Tye, A. Maxted, C. Thums, I. Thornton (2005)
Characterizing the availability of metals in contaminated soils. I. The solid phase: sequential extraction and isotopic dilutionSoil Use and Management, 21
A. Chaoui, Salma Mazhoudi, M. Ghorbal, E. Ferjani (1997)
Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L.)Plant Science, 127
K. Searcy, D. Mulcahy (1985)
Pollen selection and the gametophytic expression of metal tolerance in Silene Dioica (Caryophyllaceae) and Mimulus guttatus (Scrophulariaceae)American Journal of Botany, 72
P. Barak, P. Helmke (1993)
The Chemistry of Zinc
J. Moroney, S. Bartlett, G. Samuelsson (2001)
Carbonic anhydrases in plants and algaePlant Cell and Environment, 24
SA Barber, N Claassen (1977)
Biological implications of metals in the environment. Proceedings of the Fifteenth Hanford Life Sciences Symposium.
U. Krämer (2005)
MTP1 mops up excess zinc in Arabidopsis cells.Trends in plant science, 10 7
J. Hall, L. Williams (2003)
Transition metal transporters in plants.Journal of experimental botany, 54 393
M. Broadley, Helen Bowen, Helen Cotterill, J. Hammond, M. Meacham, A. Mead, P. White (2003)
Variation in the shoot calcium content of angiosperms.Journal of experimental botany, 54 386
Akira Katayama, A. Tsujii, A. Wada, T. Nishino, A. Ishihama (2002)
Systematic search for zinc-binding proteins in Escherichia coli.European journal of biochemistry, 269 9
Valerie Cappuyns, R. Swennen, A. Vandamme, M. Niclaes (2005)
Environmental impact of the former Pb–Zn mining and smelting in East BelgiumJournal of Geochemical Exploration, 88
N. Roosens, R. Leplae, C. Bernard, N. Verbruggen (2005)
Variations in plant metallothioneins: the heavy metal hyperaccumulator Thlaspi caerulescens as a study casePlanta, 222
D. Blaudez, A. Kohler, F. Martin, D. Sanders, M. Chalot (2003)
Poplar Metal Tolerance Protein 1 Confers Zinc Tolerance and Is an Oligomeric Vacuolar Zinc Transporter with an Essential Leucine Zipper Motif Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.017541.The Plant Cell Online, 15
Ralph RILEYs (1956)
THE INFLUENCE OF THE BREEDING SYSTEM ON THE GENECOLOGY OF THLASPI ALPESTRE L.New Phytologist, 55
A. Borhidi (2001)
Phylogenetic trends in Ni-accumulating plantsSouth African Journal of Science, 97
H. Frérot, C. Lefébvre, Christophe Petit, C. Collin, A. Santos, J. Escarré (2004)
Zinc tolerance and hyperaccumulation in F1 and F2 offspring from intra and interecotype crosses of Thlaspi caerulescens.The New phytologist, 165 1
A. Zimeri, O. Dhankher, Bonnie Mccaig, R. Meagher (2005)
The Plant MT1 Metallothioneins are Stabilized by Binding Cadmiums and are Required for Cadmium Tolerance and AccumulationPlant Molecular Biology, 58
J. Hammond, Helen Bowen, P. White, V. Mills, K. Pyke, A. Baker, S. Whiting, S. May, M. Broadley (2006)
A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes.The New phytologist, 170 2
Nicole Pence, P. Larsen, S. Ebbs, D. Letham, M. Lasat, D. Garvin, D. Eide, L. Kochian (2000)
The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens.Proceedings of the National Academy of Sciences of the United States of America, 97 9
A. Pollard, A. Baker (1996)
Quantitative genetics of zinc hyperaccumulation in Thlaspi caerulescens.The New phytologist, 132 1
SA Barber (1995)
Soil nutrient bioavailability
Michael Weber, A. Trampczynska, S. Clemens (2006)
Comparative transcriptome analysis of toxic metal responses in Arabidopsis thaliana and the Cd(2+)-hypertolerant facultative metallophyte Arabidopsis halleri.Plant, cell & environment, 29 5
Ross Welch, R. Graham (2004)
Breeding for micronutrients in staple food crops from a human nutrition perspective.Journal of experimental botany, 55 396
Julie Misson, M. Thibaud, N. Bechtold, K. Raghothama, L. Nussaume (2004)
Transcriptional regulation and functional properties of Arabidopsis Pht1;4, a high affinity transporter contributing greatly to phosphate uptake in phosphate deprived plantsPlant Molecular Biology, 55
R. Reeves, R. Brooks (1983)
European species of Thlaspi L. (Cruciferae) as indicators of nickel and zincJournal of Geochemical Exploration, 18
P. White, Helen Bowen, V. Demidchik, C. Nichols, J. Davies (2002)
Genes for calcium-permeable channels in the plasma membrane of plant root cells.Biochimica et biophysica acta, 1564 2
Michael Moustakas, T. Lanaras, L. Symeonidis, S. Karataglis (1994)
Growth and some photosynthetic characteristics of field grown Avena sativa under copper and lead stress
M. White, A. Decker, R. Chaney (1979)
Differential Cultivar Tolerance in Soybean to Phytotoxic Levels of Soil Zn. I. Range of Cultivar Response1Agronomy Journal, 71
H. Clijsters, F. Assche (2004)
Inhibition of photosynthesis by heavy metalsPhotosynthesis Research, 7
M. Tieghem
Sur Le Réseau Sus-Endodermique De La Racine Des Cruciferes, 34
P. Srivastava, U. Gupta (1996)
Trace Elements in Crop Production
R. Irizarry, Bridget Hobbs, F. Collin, Y. Beazer-Barclay, Kristen Antonellis, U. Scherf, T. Speed (2003)
Exploration, normalization, and summaries of high density oligonucleotide array probe level data.Biostatistics, 4 2
P. Mäser, S. Thomine, J. Schroeder, J. Ward, K. Hirschi, H. Sze, I. Talke, A. Amtmann, F. Maathuis, D. Sanders, J. Harper, J. Tchieu, M. Gribskov, M. Persans, D. Salt, Sun Kim, M. Guerinot (2001)
Phylogenetic relationships within cation transporter families of Arabidopsis.Plant physiology, 126 4
N. Vaillant, F. Monnet, A. Hitmi, H. Sallanon, A. Coudret (2005)
Comparative study of responses in four Datura species to a zinc stress.Chemosphere, 59 7
A. Paton, R. Brooks (1996)
A re-evaluation of haumaniastrum species as geobotanical indicators of copper and cobaltJournal of Geochemical Exploration, 56
V. Demidchik, R. Davenport, M. Tester (2003)
Nonselective cation channels in plants.Annual review of plant biology, 53
E. Lombi, F. Zhao, S. McGrath, S. Young, G. Sacchi (2001)
Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype.The New phytologist, 149 1
H. Schlegel, D. Godbold, A. Hüttermann (1987)
Whole plant aspects of heavy metal induced changes in CO2, uptake and water relations of spruce (Picea abies) seedlingsPhysiologia Plantarum, 69
R. Tolrà, C. Poschenrieder, J. Barceló (1996)
Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acidsJournal of Plant Nutrition, 19
E. Hoffland, Changzhou Wei, M. Wissuwa (2006)
Organic Anion Exudation by Lowland Rice (Oryza sativa L.) at Zinc and Phosphorus DeficiencyPlant and Soil, 283
R. Mittler, S. Vanderauwera, Martin Gollery, F. Breusegem (2004)
Reactive oxygen gene network of plants.Trends in plant science, 9 10
S. Whiting, R. Reeves, D. Richards, Michael Johnson, J. Cooke, F. Malaisse, A. Paton, J. Smith, J. Angle, R. Chaney, R. Ginocchio, T. Jaffré, B. Johns, T. Mcintyre, O. Purvis, D. Salt, H. Schat, F. Zhao, A. Baker (2005)
Use of plants to manage sites contaminated with metals
D. Vreugdenhil, M. Aarts, M. Koornneef, H. Nelissen, W. Ernst (2004)
Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thalianaPlant Cell and Environment, 27
R. Brennan (2005)
Zinc application and its availability to plants
M. Broadley, N. Willey, Janine Wilkins, A. Baker, A. Mead, P. White (2001)
Phylogenetic variation in heavy metal accumulation in angiosperms.The New phytologist, 152 1
K. Mummenhoff, M. Koch (1994)
Chloroplast DNA restriction site variation and phylogenetic relationships in the genus Thlaspi sensu lato (Brassicaceae).Systematic Botany, 19
H. Bowen (1979)
Environmental chemistry of the elements
J. Barceló, C. Poschenrieder (1990)
Plant water relations as affected by heavy metal stress: A reviewJournal of Plant Nutrition, 13
Sophie Dubois, P. Cheptou, Christophe Petit, P. Meerts, Martin Poncelet, X. Vekemans, C. Lefébvre, J. Escarré (2003)
Genetic structure and mating systems of metallicolous and nonmetallicolous populations of Thlaspi caerulescens.The New phytologist, 157 3
T. Eulgem, P. Rushton, S. Robatzek, I. Somssich (2000)
The WRKY superfamily of plant transcription factors.Trends in plant science, 5 5
Z. Krupa, G. Öquist, N. Huner (1993)
The effects of cadmium on photosynthesis of Phaseolus vulgaris - a fluorescence analysis.Physiologia plantarum, 88 4
D. Graham, M. Reed (1971)
Carbonic anhydrase and the regulation of photosynthesis.Nature: New biology, 231 20
A. Deniau, B. Pieper, W. Bookum, P. Lindhout, M. Aarts, H. Schat (2006)
QTL analysis of cadmium and zinc accumulation in the heavy metal hyperaccumulator Thlaspi caerulescensTheoretical and Applied Genetics, 113
K H, Jie F, McGrath (1999)
Cellular compartmentation of zinc in leaves of the hyperaccumulator thlaspi caerulescensPlant physiology, 119 1
H. Küpper, I. Šetlík, M. Spiller, F. Küpper, O. Prášil (2002)
HEAVY METAL‐INDUCED INHIBITION OF PHOTOSYNTHESIS: TARGETS OF IN VIVO HEAVY METAL CHLOROPHYLL FORMATION1Journal of Phycology, 38
H. Küpper, E. Lombi, F. Zhao, S. McGrath (2000)
Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleriPlanta, 212
JP Baldwin, PH Nye, PB Tinker (1973)
Uptake of solutes by multiple root systems from soil III: A model for calculating the solute uptake by a randomly dispersed root system developing in a finite volume of soil, 38
DE Salt, RD Smith, I Raskin (1998)
Phytoremediation, 49
A. Baker, R. Reeves, A. Hajar (1994)
Heavy metal accumulation and tolerance in British populations of the metallophyte Thlaspi caerulescens J. & C. Presl (Brassicaceae).The New phytologist, 127 1
P. Meerts, Ph. ne, W. Gruber, C. Lefébvre (2003)
Metal accumulation and competitive ability in metallicolous and non-metallicolous Thlaspi caerulescens fed with different Zn saltsPlant and Soil, 249
S. Clemens (2001)
Molecular mechanisms of plant metal tolerance and homeostasisPlanta, 212
P. White, M. Broadley (2005)
Biofortifying crops with essential mineral elements.Trends in plant science, 10 12
N. Mohanty, I. Vass, S. Demeter (1989)
Impairment of photosystem 2 activity at the level of secondary quinone electron acceptor in chloroplasts treated with cobalt, nickel and zinc ionsPhysiologia Plantarum, 76
G. Bowen, M. Skinner, D. Bevege (1974)
Zinc uptake by mycorrhizal and uninfected roots of Pinus radiata and Araucaria cunninghamiiSoil Biology & Biochemistry, 6
J. Antonovics, A. Bradshaw, R. Turner (1971)
Heavy Metal Tolerance in PlantsAdvances in Ecological Research, 7
M. Hassan, T. Hai (1976)
Kinetics of Zinc Uptake by Citrus RootsZeitschrift für Pflanzenphysiologie, 79
Marie Mirouze, J. Sels, O. Richard, P. Czernic, S. Loubet, Amaury Jacquier, I. François, B. Cammue, M. Lebrun, P. Berthomieu, L. Marquès (2006)
A putative novel role for plant defensins: a defensin from the zinc hyper-accumulating plant, Arabidopsis halleri, confers zinc tolerance.The Plant journal : for cell and molecular biology, 47 3
C. Englbrecht, H. Schoof, S. Böhm (2004)
Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genomeBMC Genomics, 5
Martina Becher, I. Talke, L. Krall, U. Krämer (2004)
Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri.The Plant journal : for cell and molecular biology, 37 2
Zinc (Zn) is an essential component of thousands of proteins in plants, although it is toxic in excess. In this review, the dominant fluxes of Zn in the soil–root–shoot continuum are described, including Zn inputs to soils, the plant availability of soluble Zn2+ at the root surface, and plant uptake and accumulation of Zn. Knowledge of these fluxes can inform agronomic and genetic strategies to address the widespread problem of Zn‐limited crop growth. Substantial within‐species genetic variation in Zn composition is being used to alleviate human dietary Zn deficiencies through biofortification. Intriguingly, a meta‐analysis of data from an extensive literature survey indicates that a small proportion of the genetic variation in shoot Zn concentration can be attributed to evolutionary processes whose effects manifest above the family level. Remarkable insights into the evolutionary potential of plants to respond to elevated soil Zn have recently been made through detailed anatomical, physiological, chemical, genetic and molecular characterizations of the brassicaceous Zn hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri.
New Phytologist – Wiley
Published: Mar 1, 2007
Keywords: ; ; ; ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.