Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study

Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study Abstract This study examines a scenario of future summer climate change for the Korean peninsula using a multi-nested regional climate system. The global-scale scenario from the ECHAM5, which has a 200 km grid, was downscaled to a 50 km grid over Asia using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). This allowed us to obtain large-scale forcing information for a one-way, double-nested Weather and Research Forecasting (WRF) model that consists of a 12 km grid over Korea and a 3 km grid near Seoul. As a pilot study prior to the multi-year simulation work the years 1995 and 2055 were selected for the present and future summers. This RSM-WRF multi-nested downscaling system was evaluated by examining a downscaled climatology in 1995 with the largescale forcing from the NCEP/Department of Energy (DOE) reanalysis. The changes in monsoonal flows over East Asia and the associated precipitation change scenario over Korea are highlighted. It is found that the RSM-WRF system is capable of reproducing large-scale features associated with the East-Asian summer monsoon (EASM) and its associated hydro-climate when it is nested by the NCEP/DOE reanalysis. The ECHAM5-based downscaled climate for the present (1995) summer is found to suffer from a weakening of the low-level jet and sub-tropical high when compared the reanalysis-based climate. Predicted changes in summer monsoon circulations between 1995 and 2055 include a strengthened subtropical high and an intensified mid-level trough. The resulting projected summer precipitation is doubled over much of South Korea, accompanied by a pronounced surface warming with a maximum of about 2 K. It is suggested that downscaling strategy of this study, with its cloud-resolving scale, makes it suitable for providing high-resolution meteorological data with which to derive hydrology or air pollution models. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png "Asia-Pacific Journal of Atmospheric Sciences" Springer Journals

Future climate change scenarios over Korea using a multi-nested downscaling system: A pilot study

Loading next page...
 
/lp/springer-journals/future-climate-change-scenarios-over-korea-using-a-multi-nested-iv5J0odHx4

References (35)

Publisher
Springer Journals
Copyright
2010 Korean Meteorological Society and Springer Netherlands
ISSN
1976-7633
eISSN
1976-7951
DOI
10.1007/s13143-010-0024-1
Publisher site
See Article on Publisher Site

Abstract

Abstract This study examines a scenario of future summer climate change for the Korean peninsula using a multi-nested regional climate system. The global-scale scenario from the ECHAM5, which has a 200 km grid, was downscaled to a 50 km grid over Asia using the National Centers for Environmental Prediction (NCEP) Regional Spectral Model (RSM). This allowed us to obtain large-scale forcing information for a one-way, double-nested Weather and Research Forecasting (WRF) model that consists of a 12 km grid over Korea and a 3 km grid near Seoul. As a pilot study prior to the multi-year simulation work the years 1995 and 2055 were selected for the present and future summers. This RSM-WRF multi-nested downscaling system was evaluated by examining a downscaled climatology in 1995 with the largescale forcing from the NCEP/Department of Energy (DOE) reanalysis. The changes in monsoonal flows over East Asia and the associated precipitation change scenario over Korea are highlighted. It is found that the RSM-WRF system is capable of reproducing large-scale features associated with the East-Asian summer monsoon (EASM) and its associated hydro-climate when it is nested by the NCEP/DOE reanalysis. The ECHAM5-based downscaled climate for the present (1995) summer is found to suffer from a weakening of the low-level jet and sub-tropical high when compared the reanalysis-based climate. Predicted changes in summer monsoon circulations between 1995 and 2055 include a strengthened subtropical high and an intensified mid-level trough. The resulting projected summer precipitation is doubled over much of South Korea, accompanied by a pronounced surface warming with a maximum of about 2 K. It is suggested that downscaling strategy of this study, with its cloud-resolving scale, makes it suitable for providing high-resolution meteorological data with which to derive hydrology or air pollution models.

Journal

"Asia-Pacific Journal of Atmospheric Sciences"Springer Journals

Published: Nov 1, 2010

There are no references for this article.