Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
▪ Abstract The formation of switchable holographic gratings from polymer-dispersed liquid crystals (H-PDLCs) allows for the development of switchable transmissive and reflective diffractive optics. These structures are created by the coherent interference of laser radiation within a syrup containing photoreactive monomer, initiator, and liquid crystal. Local differences in photopolymerization rates induce phase separation of discrete LC domains to occur periodically commensurate with the period of the interference pattern. These spatially periodic gratings of nano-scale sized LC domains can be formed on grating length scales ranging from 100 nm to microns depending on the optics of fabrication. True Bragg gratings are formed with spacings typically less than 1 μm. Owing to the refractive profile generated by this periodic two-phase structure, diffraction of light occurs. Electrical switching of the average director orientation within the LC domains results in a modulation of diffracted radiation. This technology serves as the basis for the fabrication of switchable diffractive optical elements. We review the current state-of-the-art of H-PDLC technology including the materials used to date, the resulting electro-optical properties, the importance of grating formation dynamic measurements, and structure/property relationships developed using solid state morphology techniques.
Annual Review of Materials Research – Annual Reviews
Published: Aug 1, 2000
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.