Access the full text.
Sign up today, get DeepDyve free for 14 days.
(1982)
Generalized structures of the 5 S ribosomal RNAs
J. Limaiem, A. Hénaut (1984)
Etude de la fluctuation de la fréquence des quatre bases le long du génome mitochondrial des Mammifères au moyen de l'analyse factorielle des correspondances, 298
JP Benzecri (1969)
Methodologies of pattern recognition
J. Bretaudiere, G. Dumont, R. Rej, M. Bailly (1981)
Suitability of control materials. General principles and methods of investigation.Clinical chemistry, 27 6
M. Radermacher, J. Frank (1985)
Use of nonlinear mapping in multivariate image analysis of molecule projections.Ultramicroscopy, 17 2
(1985)
The structure of the 5S ribosomal RNA from the therrnophilic cyanobacterium Synechococcus lividus II
P. Willekens, E. Huysmans, A. Vandenberghe, R. Wachter (1986)
Archaebacterial 5 S ribosomal RNA: Nucleotide sequence in two methanogen species, secondary structure models, and molecular evolutionSystematic and Applied Microbiology, 7
M. Rogers, J. Simmons, R. Walker, W. Weisburg, C. Woese, R. Tanner, I. Robinson, D. Stahl, G. Olsen, R. Leach (1985)
Construction of the mycoplasma evolutionary tree from 5S rRNA sequence data.Proceedings of the National Academy of Sciences of the United States of America, 82 4
(1983)
Phylogeny of protozoa
M. Sjöström, S. Wold (2005)
A multivariate study of the relationship between the genetic code and the physical-chemical properties of amino acidsJournal of Molecular Evolution, 22
E. Orozco, P. Gray, Richard Hallickfj (2001)
Euglena gracilis Chloroplast Ribosomal RNA Transcription Units
V. Erdmann, J. Wolters, E. Huysmans, R. Wachter (1985)
Collection of published 5S, 5.8S and 4.5S ribosomal RNA sequences.Nucleic acids research, 13 Suppl
(1975)
Evolution of5S RNA
Dayhoff Mo (1976)
The origin and evolution of protein superfamilies., 35
N. Delihas, J. Andersen (1982)
Generalized structures of the 5S ribosomal RNAs.Nucleic acids research, 10 22
G. Fox, E. Stackebrandt, R. Hespell, J. Gibson, J. Maniloff, T. Dyer, R. Wolfe, W. Balch, R. Tanner, L. Magrum, L. Zablen, R. Blakemore, Ramesh Gupta, L. Bonen, B. Lewis, D. Stahl, K. Luehrsen, KN Chen, C. Woese (1980)
The phylogeny of prokaryotes.Microbiological sciences, 1 5
N. Delihas, J. Andersen, R. Singhal (1984)
Structure, function and evolution of 5-S ribosomal RNAs.Progress in nucleic acid research and molecular biology, 31
P. Duncombe (1985)
Multivariate Descriptive Statistical Analysis: Correspondence Analysis and Related Techniques for Large Matrices, 148
E. Villanueva, K. Luehrsen, J. Gibson, N. Delihas, G. Fox (2005)
Phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequencesJournal of Molecular Evolution, 22
(1984)
Henaut A (1984) Etude de la fluctuation de la
R. MacKay, D. Salgado, L. Bonen, E. Stackebrandt, W. Doolittle (1982)
The 5S ribosomal RNAs of Paracoccus denitrificans and Prochloron.Nucleic acids research, 10 9
G. Keith (1967)
Rare birds identified.Science, 155 3760
L. Margulis (1970)
Origin of eukaryotic cells;: Evidence and research implications for a theory of the origin and evolution of microbial, plant, and animal cells on the Precambrian earth
P. Raven, L. Margulis (1971)
ORIGIN OF EUKARYOTIC CELLSEvolution, 25
R. Schwartz, M. Dayhoff (1978)
Origins of prokaryotes, eukaryotes, mitochondria, and chloroplasts.Science, 199 4327
W. Fitch, E. Margoliash (1967)
Construction of phylogenetic trees.Science, 155 3760
H. Hori, S. Osawa (1979)
Evolutionary change in 5S RNA secondary structure and a phylogenic tree of 54 5S RNA species.Proceedings of the National Academy of Sciences of the United States of America, 76 1
GE Fox, KR Luehrsen, CR Woese (1982)
Archaebacterial 5S ribosomal RNAZentralbl Bakteriol Hyg I [C], 3
J. Frank, M. Heel (1982)
Correspondence analysis of aligned images of biological particles.Journal of molecular biology, 161 1
E Villanueva, KR Luehrsen, J Gibson, N Delihas, GE Fox (1985)
Localization and the phylogenetic origins of the plant mitochondrion based on a comparative analysis of 5S ribosomal RNA sequencesJ Mol Evol, 22
H. Hori (1975)
Evolution of 5sRNAJournal of Molecular Evolution, 7
H. Hori, Syozo Osawat (1987)
Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences.Molecular biology and evolution, 4 5
G. Karabin, J. Narita, J. Dodd, R. Hallick (1983)
Euglena gracilis chloroplast ribosomal RNA transcription units. Nucleotide sequence polymorphism in 5 S rRNA genes and 5 S rRNAs.The Journal of biological chemistry, 258 24
J. Benzécri (1969)
STATISTICAL ANALYSIS AS A TOOL TO MAKE PATTERNS EMERGE FROM DATA
(1979)
Evolutionary change in 5 S RNA secondary structure and a phylogenetic tree of 54 5 S RNA species
M. Dayhoff (1976)
The origin and evolution of protein superfamilies.Federation proceedings, 35 10
L Lebart, A Morineau, KA Warwick (1984)
Multivariate descriptive statistical analysis
M. Heel, J. Frank (1981)
Use of multivariate statistics in analysing the images of biological macromolecules.Ultramicroscopy, 6 2
N. Delihas, J. Andersen, D. Berns (1985)
Phylogeny of the 5S ribosomal RNA fromSynechococcus lividus II: The cyanobacterial/chloroplast 5S RNAs form a common structural classJournal of Molecular Evolution, 21
(1978)
Origins ofprokaryotes, eukaryotes, mitochondria and chloroplasts
T. Kumazaki, H. Hori, S. Osawa (2005)
Phylogeny of protozoa deduced from 5S rRNA sequencesJournal of Molecular Evolution, 19
(1985)
Use of nonlinear mapping
(1982)
Correspondence analysis of aligned
Correspondence analysis (a form of multivariate statistics) applied to 74 5S ribosomal RNA sequences indicates that the sequences are interrelated in a systematic, nonrandom fashion. Aligned sequences are represented as vectors in a 5N-dimensional space, where N is the number of base positions in the 5S RNA molecule. Mutually orthogonal directions (called factor axes) along which intersequence variance is greatest are defined in this hyperspace. Projection of the sequences onto planes defined by these factorial directions reveals clustering of species that is suggestive of phylogenetic relationships. For each factorial direction, correspondence analysis points to regions of “importance”, i.e., those base positions at which the systematic changes occur that define that particular direction. In effect, the technique provides a rapid determination of group-specific signatures. In several instances, similarities between sequences are indicated that have only recently been inferred from visual base-to-base comparisons. These results suggest that correspondence analysis may provide a valuable starting point from which to uncover the patterns of change underlying the evolution of a macromolecule, such as 5S RNA.
Journal of Molecular Evolution – Springer Journals
Published: Aug 2, 2005
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.