Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs)

Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts... Abstract Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. This content is only available as a PDF. Copyright © 1995 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Plant Physiology Oxford University Press

Abscisic Acid Structure-Activity Relationships in Barley Aleurone Layers and Protoplasts (Biological Activity of Optically Active, Oxygenated Abscisic Acid Analogs)

Loading next page...
 
/lp/oxford-university-press/abscisic-acid-structure-activity-relationships-in-barley-aleurone-imfmc0evGA

References (33)

Publisher
Oxford University Press
Copyright
Copyright © 2021 American Society of Plant Biologists
ISSN
0032-0889
eISSN
1532-2548
DOI
10.1104/pp.108.2.573
Publisher site
See Article on Publisher Site

Abstract

Abstract Optically active forms of abscisic acid (ABA) and their oxygenated metabolites were tested for their biological activity by examining the effects of the compounds on the reversal of gibberellic acid-induced [alpha]-amylase activity in barley (Hordeum vulgare cv Himalaya) aleurone layers and the induction of gene expression in barley aleurone protoplasts transformed with a chimeric construct containing the promoter region of an albumin storage protein gene. Promotion of the albumin storage protein gene response had a more strict stereochemical requirement for elicitation of an ABA response than inhibition of [alpha]-amylase gene expression. The naturally occurring stereoisomer of ABA and its metabolites were more effective at eliciting an ABA-like response. ABA showed the highest activity, followed by 7[prime]-hydroxyABA, with phaseic acid being the least active. Racemic 8[prime]-hydroxy-2[prime],3[prime]-dihydroABA, an analog of 8[prime]-hydroxyABA, was inactive, whereas racemic 2[prime],3[prime]-dihydroABA was as effective as ABA. The differences in response of the same tissue to the ABA enantiomers lead us to conclude that there exists more than one type of ABA receptor and/or multiple signal transduction pathways in barley aleurone tissue. This content is only available as a PDF. Copyright © 1995 by American Society of Plant Biologists This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)

Journal

Plant PhysiologyOxford University Press

Published: Jun 1, 1995

There are no references for this article.