Access the full text.
Sign up today, get DeepDyve free for 14 days.
K. Koch (1988)
Parameter estimation and hypothesis testing in linear models
603 ± 26 Gt/yr) between February 2003 and June 2013 when only the ICE-5G GIA model is used. Input to this analysis is the combination of the mass-time series of the GrIS, the AIS, and the LIC
R. Rietbroek, Sandra-Esther Brunnabend, J. Kusche, J. Schröter (2012)
Resolving sea level contributions by identifying fingerprints in time-variable gravity and altimetryJournal of Geodynamics, 59
B. Wouters (2010)
Identification and Modeling of Sea Level Change Contributors: On GRACE satellite gravity data and their applications to climate monitoring
B. Wouters, Don Chambers, E. Schrama (2008)
GRACE observes small‐scale mass loss in GreenlandGeophysical Research Letters, 35
P. Whitehouse, M. Bentley, G. Milne, Matt King, I. Thomas (2012)
A new glacial isostatic adjustment model for Antarctica: calibrated and tested using observations of relative sea‐level change and present‐day uplift ratesGeophysical Journal International, 190
M. Broeke, J. Bamber, J. Ettema, E. Rignot, E. Schrama, W. Berg, E. Meijgaard, I. Velicogna, B. Wouters (2009)
Partitioning Recent Greenland Mass LossScience, 326
E. Ivins, T. James, J. Wahr, Ernst Schrama, F. Landerer, K. Simon (2013)
Antarctic contribution to sea level rise observed by GRACE with improved GIA correctionJournal of Geophysical Research: Solid Earth, 118
C. Dahle, F. Flechtner, C. Gruber, D. König, R. König, G. Michalak, K. Neumayer (2012)
GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005
R. Sabadini (2004)
Applications of Normal Mode Relaxation Theory to Solid Earth Geophysics
E. Leuliette (2015)
The Balancing of the Sea-Level BudgetCurrent Climate Change Reports, 1
From our results, it can be concluded that the total contribution to a sea level rise signal becomes
T. James, E. Ivins (1995)
Present-day Antarctic Ice Mass Changes and Crustal MotionGeophysical Research Letters, 22
L. Jensen, R. Rietbroek, J. Kusche (2013)
Land water contribution to sea level from GRACE and Jason-1measurementsJournal of Geophysical Research, 118
S. Bettadpur (2007)
GRACE 32‐742, UTCSR level‐2 processing standards document for level‐2 product release 004, 27‐Feb‐2007
R. Rietbroek, M. Fritsche, Sandra-Esther Brunnabend, I. Daras, J. Kusche, J. Schröter, F. Flechtner, R. Dietrich (2012)
Global surface mass from a new combination of GRACE, modelled OBP and reprocessed GPS dataJournal of Geodynamics, 59
E. Schrama, B. Wouters (2011)
Revisiting Greenland ice sheet mass loss observed by GRACEJournal of Geophysical Research, 116
R. Riva, J. Bamber, D. Lavallée, B. Wouters (2010)
Sea‐level fingerprint of continental water and ice mass change from GRACEGeophysical Research Letters, 37
R. Rapp (1977)
The relationship between mean anomaly block sizes and spherical harmonic representationsJournal of Geophysical Research, 82
B. Wouters, J. Wahr, A. Gardner, G. Moholdt (2013)
How well does GRACE capture small-scale glacier mass variations?
M. Simpson, G. Milne, P. Huybrechts, A. Long (2009)
Calibrating a glaciological model of the Greenland ice sheet from the Last Glacial Maximum to present-day using field observations of relative sea level and ice extentQuaternary Science Reviews, 28
E. Ivins, M. Watkins, D. Yuan, R. Dietrich, G. Casassa, A. Rülke (2011)
On-land ice loss and glacial isostatic adjustment at the drake passage: 2003-2009Journal of Geophysical Research, 116
W. Peltier (2004)
GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACEAnnual Review of Earth and Planetary Sciences, 32
©2014. American Geophysical Union. All Rights Reserved
J. Demmel (1990)
LAPACK: A portable linear algebra library for high-performance computersProceedings SUPERCOMPUTING '90
K. Fleming, K. Lambeck (2004)
Constraints on the Greenland Ice Sheet since the Last Glacial Maximum from sea-level observations and glacial-rebound modelsQuaternary Science Reviews, 23
E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. McKenney, J. Du Croz, S. Hammerling, J. Demmel, C. Bischof, D. Sorensen (1990)
Proceedings of the 1990 ACM/IEEE Conference on Supercomputing, Supercomputing '90
P. Whitehouse, M. Bentley, A. Brocq (2012)
A deglacial model for Antarctica: geological constraints and glaciological modelling as a basis for a new model of Antarctic glacial isostatic adjustmentQuaternary Science Reviews, 32
M. Rodell, P. Houser, U. Jambor, J. Gottschalck, K. Mitchell, C. Meng, K. Arsenault, B. Cosgrove, J. Radakovich, M. Bosilovich, J. Entin, J. Walker, D. Lohmann, D. Toll (2004)
THE GLOBAL LAND DATA ASSIMILATION SYSTEMBulletin of the American Meteorological Society, 85
P. Muller, W. Sjogren (1968)
Mascons: Lunar Mass ConcentrationsScience, 161
A. Paulson, S. Zhong, J. Wahr (2007)
FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level dataGeophysical Journal International
B. Tapley, S. Bettadpur, J. Ries, P. Thompson, M. Watkins (2004)
GRACE Measurements of Mass Variability in the Earth SystemScience, 305
W. Farrell (1972)
Deformation of the Earth by surface loadsReviews of Geophysics, 10
E. Leuliette, J. Willis (2011)
Balancing the Sea Level BudgetOceanography, 24
M. Paul (1978)
Recurrence relations for integrals of Associated Legendre functionsBulletin Géodésique, 52
A. Gardner, G. Moholdt, J. Cogley, B. Wouters, A. Arendt, J. Wahr, E. Berthier, R. Hock, W. Pfeffer, G. Kaser, S. Ligtenberg, T. Bolch, M. Sharp, J. Hagen, M. Broeke, F. Paul (2013)
A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009Science, 340
B. Gunter, T. Urban, Riccardo Riva, M. Helsen, R. Harpold, S. Poole, P. Nagel, Bob Schutz, B. Tapley (2009)
A comparison of coincident GRACE and ICESat data over AntarcticaJournal of Geodesy, 83
S. Luthcke, T. Sabaka, B. Loomis, A. Arendt, J. Mccarthy, J. Camp (2013)
Antarctica, Greenland and Gulf of Alaska land-ice evolution from an iterated GRACE global mascon solutionJournal of Glaciology, 59
J. Houghton (2014)
Climate Change 2013 - The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change
J. Wahr, D. Wingham, C. Bentley (2000)
A method of combining ICESat and GRACE satellite data to constrain Antarctic mass balanceJournal of Geophysical Research, 105
Microphysically Derived Expressions for Rate-and-State Friction Parameters, a , b , and D c Journal of Geophysical Research: Solid Earth
G. Blewitt, D. Lavallée, P. Clarke, K. Nurutdinov (2001)
A New Global Mode of Earth Deformation: Seasonal Cycle DetectedScience, 294
J. Kargel (2014)
Global Land Ice Measurements from SpaceGlobal Land Ice Measurements from Space
B. Wouters, J. Bamber, M. Broeke, J. Lenaerts, I. Sasgen (2013)
Limits in detecting acceleration of ice sheet mass loss due to climate variabilityNature Geoscience, 6
N. Evelpidou, P. Pirazzoli, A. Vassilopoulos, G. Spada, G. Ruggieri, A. Tomasin (2012)
Late Holocene Sea Level Reconstructions Based on Observations of Roman Fish Tanks, Tyrrhenian Coast of ItalyGeoarchaeology, 27
P. Woodworth, M. Menéndez, W. Gehrels (2011)
Evidence for Century-Timescale Acceleration in Mean Sea Levels and for Recent Changes in Extreme Sea LevelsSurveys in Geophysics, 32
F. Dahlen (1976)
The Passive Influence of the Oceans upon the Rotation of the EarthGeophysical Journal International, 46
J. Wahr, S. Zhong (2012)
Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: an application to Glacial Isostatic Adjustment in Antarctica and CanadaGeophysical Journal International, 192
(2012)
Late Holocene sea level reconstruction based on
A. Shepherd, E. Ivins, G. A, V. Barletta, M. Bentley, S. Bettadpur, K. Briggs, D. Bromwich, R. Forsberg, N. Galin, M. Horwath, S. Jacobs, I. Joughin, Matt King, J. Lenaerts, Jilu Li, S. Ligtenberg, A. Luckman, S. Luthcke, M. McMillan, Rakia Meister, G. Milne, J. Mouginot, A. Muir, J. Nicolas, J. Paden, A. Payne, H. Pritchard, E. Rignot, H. Rott, L. Sørensen, T. Scambos, B. Scheuchl, E. Schrama, Ben Smith, A. Sundal, J. Angelen, W. Berg, M. Broeke, D. Vaughan, I. Velicogna, J. Wahr, P. Whitehouse, D. Wingham, D. Yi, D. Young, H. Zwally (2012)
A Reconciled Estimate of Ice-Sheet Mass BalanceScience, 338
S. Swenson, D. Chambers, J. Wahr (2008)
Estimating Geocenter Variations from a Combination of GRACE and Ocean Model OutputJournal of Geophysical Research, 113
Dazhong Han, J. Wahr (1995)
The viscoelastic relaxation of a realistically stratified earth, and a further analysis of postglacial reboundGeophysical Journal International, 120
E. Schrama, B. Wouters, D. Lavallée (2007)
Signal and noise in Gravity Recovery and Climate Experiment (GRACE) observed surface mass variationsJournal of Geophysical Research, 112
J. Church, N. White (2011)
Sea-Level Rise from the Late 19th to the Early 21st CenturySurveys in Geophysics, 32
O. Baur, N. Sneeuw (2011)
Assessing Greenland ice mass loss by means of point-mass modeling: a viable methodologyJournal of Geodesy, 85
C. Boening, M. Lebsock, F. Landerer, G. Stephens (2012)
Snowfall‐driven mass change on the East Antarctic ice sheetGeophysical Research Letters, 39
Bryan Killett, J. Wahr, Neil Ashby, Peter Bender, Robert Leben, Steve Nerem, S. Desai (2009)
Arctic Ocean Tides from GRACE Satellite AccelerationsJournal of Geophysical Research, 116
F. Dahleo (2009)
The Passive Influence of the Oceans upon the Rotation of the Earth
E. Schrama, B. Wouters, B. Vermeersen (2011)
Present Day Regional Mass Loss of Greenland Observed with Satellite GravimetrySurveys in Geophysics, 32
S. Swenson, J. Wahr (2002)
Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravityJournal of Geophysical Research, 107
D. Lavallée, T. Dam, G. Blewitt, P. Clarke (2006)
Geocenter motions from GPS: A unified observation modelJournal of Geophysical Research, 111
G. Blewitt (2003)
Self‐consistency in reference frames, geocenter definition, and surface loading of the solid EarthJournal of Geophysical Research, 108
J. Wahr, Mery Molenaar, F. Bryan (1998)
Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACEJournal of Geophysical Research, 103
T. Jacob, J. Wahr, W. Pfeffer, S. Swenson (2012)
Recent contributions of glaciers and ice caps to sea level riseNature, 482
B. Raup, A. Racoviteanu, S. Khalsa, Christopher Helm, R. Armstrong, Y. Arnaud (2007)
The GLIMS geospatial glacier database: A new tool for studying glacier change ☆Global and Planetary Change, 56
W. Press, B. Flannery, S. Teukolsky, W. Vetterling, P. Kramer (1987)
Numerical Recipes: The Art of Scientific ComputingPhysics Today, 40
M. Cheng, B. Tapley, J. Ries (2013)
Deceleration in the Earth's oblatenessJournal of Geophysical Research: Solid Earth, 118
N. White, L. Konikow, C. Domingues, J. Cogley, E. Rignot, J. Gregory, M. Broeke, A. Monaghan, I. Velicogna (2011)
Revisiting the Earth's sea‐level and energy budgets from 1961 to 2008Geophysical Research Letters, 38
J. Church, N. White (2011)
Sea-Level Rise from the Late 19 th to the Early 21 st Century
P. Woodworth, M. Menéndez, W. Gehrels (2011)
Erratum to: Evidence for Century-Timescale Acceleration in Mean Sea Levels and for Recent Changes in Extreme Sea LevelsSurveys in Geophysics, 32
H. Dobslaw, F. Flechtner, I. Bergmann-Wolf, C. Dahle, R. Dill, S. Esselborn, I. Sasgen, Maik Thomas (2013)
Simulating high‐frequency atmosphere‐ocean mass variability for dealiasing of satellite gravity observations: AOD1B RL05Journal of Geophysical Research, 118
A. Eicker, J. Schall, J. Kusche (2014)
Regional gravity modelling from spaceborne data: case studies with GOCEGeophysical Journal International, 196
I. Velicogna (2009)
Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACEGeophysical Research Letters, 36
G. Spada, V. Barletta, V. Klemann, R. Riva, Z. Martinec, P. Gasperini, B. Lund, D. Wolf, L. Vermeersen, Matt King (2011)
A benchmark study for glacial isostatic adjustment codesGeophysical Journal International, 185
The purpose of this paper is to assess the mass changes of the Greenland Ice Sheet (GrIS), Ice Sheets over Antarctica, and Land glaciers and Ice Caps with a global mascon method that yields monthly mass variations at 10,242 mascons. Input for this method are level 2 data from the Gravity Recovery and Climate Experiment (GRACE) system collected between February 2003 and June 2013 to which a number of corrections are made. With glacial isostatic adjustment (GIA) corrections from an ensemble of models based on different ice histories and rheologic Earth model parameters, we find for Greenland a mass loss of −278 ± 19 Gt/yr. Whereas the mass balances for the GrIS appear to be less sensitive to GIA modeling uncertainties, this is not the case with the mass balance of Antarctica. Ice history models for Antarctica were recently improved, and updated historic ice height data sets and GPS time series have been used to generate new GIA models. We investigated the effect of two new GIA models for Antarctica and found −92 ± 26 Gt/yr which is half of what is obtained with ICE‐5G‐based GIA models, where the largest GIA model differences occur on East Antarctica. The mass balance of land glaciers and ice caps currently stands at −162 ± 10 Gt/yr. With the help of new GIA models for Antarctica, we assess the mass contribution to the mean sea level at 1.47 ± 0.09 mm/yr or 532 ± 34Gt/yr which is roughly half of the global sea level rise signal obtained from tide gauges and satellite altimetry.
Journal of Geophysical Research: Solid Earth – Wiley
Published: Jan 1, 2014
Keywords: ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.