Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Elucidation of Arctigenin Pharmacokinetics After Intravenous and Oral Administrations in Rats: Integration of In Vitro and In Vivo Findings via Semi-mechanistic Pharmacokinetic Modeling

Elucidation of Arctigenin Pharmacokinetics After Intravenous and Oral Administrations in Rats:... Abstract Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway of AR, which occurred with V max, K m, and Clint of 47.5 ± 3.4 nmol/min/mg, 204 ± 22 μM, and 233 ± 9 μl/min/mg with intestinal microsomes and 2.92 ± 0.07 nmol/min/mg, 22.7 ± 1.2 μM, and 129 ± 4 μl/min/mg with liver microsomes, respectively. In addition, demethylation and hydrolysis of AR occurred with liver microsomes but not with intestinal microsomes. In vitro incubation of AR and its metabolites in intestinal content demonstrated that glucuronides of AR excreted in bile could be further hydrolyzed back to the parent compound, suggesting its potential enterohepatic circulation. Furthermore, rapid formation followed by fast elimination of arctigenic acid (AA) and arctigenin-4′-O-glucuronide (AG) was observed after both intravenous (IV) and oral administrations of AR in rats. Linear pharmacokinetics was observed at three different doses for AR, AA, and AG after IV administration of AR (0.48–2.4 mg/kg, r 2 > 0.99). Finally, an integrated semi-mechanistic pharmacokinetic model using in vitro enzyme kinetic and in vivo pharmacokinetic parameters was successfully developed to describe plasma concentrations of AR, AA, and AG after both IV and oral administration of AR at all tested doses. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The AAPS Journal Springer Journals

Elucidation of Arctigenin Pharmacokinetics After Intravenous and Oral Administrations in Rats: Integration of In Vitro and In Vivo Findings via Semi-mechanistic Pharmacokinetic Modeling

The AAPS Journal , Volume 16 (6): 13 – Nov 1, 2014

Loading next page...
 
/lp/springer-journals/elucidation-of-arctigenin-pharmacokinetics-after-intravenous-and-oral-hwYmbq0irx

References (50)

Publisher
Springer Journals
Copyright
2014 American Association of Pharmaceutical Scientists
eISSN
1550-7416
DOI
10.1208/s12248-014-9664-x
Publisher site
See Article on Publisher Site

Abstract

Abstract Although arctigenin (AR) has attracted substantial research interests due to its promising and diverse therapeutic effects, studies regarding its biotransformation were limited. The current study aims to provide information regarding the pharmacokinetic properties of AR via various in vitro and in vivo experiments as well as semi-mechanistic pharmacokinetic modeling. Our in vitro rat microsome incubation studies revealed that glucuronidation was the main intestinal and liver metabolic pathway of AR, which occurred with V max, K m, and Clint of 47.5 ± 3.4 nmol/min/mg, 204 ± 22 μM, and 233 ± 9 μl/min/mg with intestinal microsomes and 2.92 ± 0.07 nmol/min/mg, 22.7 ± 1.2 μM, and 129 ± 4 μl/min/mg with liver microsomes, respectively. In addition, demethylation and hydrolysis of AR occurred with liver microsomes but not with intestinal microsomes. In vitro incubation of AR and its metabolites in intestinal content demonstrated that glucuronides of AR excreted in bile could be further hydrolyzed back to the parent compound, suggesting its potential enterohepatic circulation. Furthermore, rapid formation followed by fast elimination of arctigenic acid (AA) and arctigenin-4′-O-glucuronide (AG) was observed after both intravenous (IV) and oral administrations of AR in rats. Linear pharmacokinetics was observed at three different doses for AR, AA, and AG after IV administration of AR (0.48–2.4 mg/kg, r 2 > 0.99). Finally, an integrated semi-mechanistic pharmacokinetic model using in vitro enzyme kinetic and in vivo pharmacokinetic parameters was successfully developed to describe plasma concentrations of AR, AA, and AG after both IV and oral administration of AR at all tested doses.

Journal

The AAPS JournalSpringer Journals

Published: Nov 1, 2014

Keywords: pharmacology/toxicology; biochemistry, general; biotechnology; pharmacy

There are no references for this article.