Access the full text.
Sign up today, get DeepDyve free for 14 days.
T. Hökfelt, O. Johansson, M. Goldstein (1984)
Chemical anatomy of the brain.Science, 225 4668
S. Hendry, E. Jones (1985)
Morphology of synapses formed by cholecystokinin-immunoreactive axon terminals in regio superior of rat hippocampusNeuroscience, 16
N. Hálasz, O. Johansson, T. Hökfelt, Å. Ljungdahl, M. Goldstein (1981)
Immunohistochemical identification of two types of dopamine neuron in the rat olfactory bulb as seen by serial sectioningJournal of Neurocytology, 10
V. Chan‐Palay, S. Palay (1984)
Coexistence of neuroactive substances in neurons
J. Haycock, J. Waymire (1982)
Activating antibodies to tyrosine hydroxylase.The Journal of biological chemistry, 257 16
Bogan (1982)
895Neuroscience, 7
L. Sternberger (1979)
Immunohistochemistry
N. Hálasz, T. Hökfelt, A. Norman, M. Goldstein (1985)
Tyrosine hydroxylase and 28K-vitamin D-dependent calcium binding protein are localized in different subpopulations of periglomerular cells of the rat olfactory bulbNeuroscience Letters, 61
E. Reynolds (1963)
THE USE OF LEAD CITRATE AT HIGH pH AS AN ELECTRON-OPAQUE STAIN IN ELECTRON MICROSCOPYThe Journal of Cell Biology, 17
Chan-Palay (1978)
1582Proc. Natl. Acad. Sci. USA, 75
F. Macrides, S. Schneider (1982)
Laminar organization of mitral and tufted cells in the main olfactory bulb of the adult hamsterJournal of Comparative Neurology, 208
T. Getchell, G. Shepherd (1975)
Short‐axon cells in the olfactory bulb: dendrodendritic synaptic interactions.The Journal of Physiology, 251
D. Millhorn, T. Hökfelt, K. Seroogy, W. Oertel, A. Verhofstad, J. Wu (1987)
Immunohistochemical evidence for colocalization of γ-aminobutyric acid and serotonin in neurons of the ventral medulla oblongata projecting to the spinal cordBrain Research, 410
L. Benardo, D. Prince (1982)
Dopamine action on hippocampal pyramidal cells, 2
C. Ribak, J. Vaughn, Kihachi Saito, R. Barber, E. Roberts (1977)
Glutamate decarboxylase localization in neurons of the olfactory bulbBrain Research, 126
G. Pelletier (1984)
[Coexistence of peptides and classical neurotransmitters].Annales d'endocrinologie, 45 3
F. Macrides, B. J. Davis (1983)
Chemical Neuroanatomy
A. Pinching, T. Powell (1971)
The neuron types of the glomerular layer of the olfactory bulb.Journal of cell science, 9 2
M. Belin, D. Nanopoulos, M. Didier, M. Aguera, H. Steinbusch, A. Verhofstad, M. Maitre, J. Pujol (1983)
Immunohistochemical evidence for the presence of γ-aminobutyric acid and serotonin in one nerve cell. A study on the raphe nuclei of the rat using antibodies to glutamate decarboxylase and serotoninBrain Research, 275
H. Baker, T. Kawano, F. Margolis, T. Joh (1983)
Transneuronal regulation of tyrosine hydroxylase expression in olfactory bulb of mouse and rat, 3
Benardo (1982)
415J. Neurosci., 2
L. Skirboll, T. Hökfelt, J. Rehfeld, A. Cuello, G. Dockray (1982)
Coexistence of substance P- and cholecystokinin-like immunoreactivity in neurons of the mesencephalic periaqueductal central grayNeuroscience Letters, 28
Chan-Palay (1982)
7027Proc. Natl. Acad. Sci. USA, 79
H. Potter, S. Chorover (1976)
Response plasticity in hamster olfactory bulb: peripheral and central processesBrain Research, 116
B. Davis, F. Macrides (1983)
Tyrosine hydroxylase immunoreactive neurons and fibers in the olfactory system of the hamsterJournal of Comparative Neurology, 214
T. Hökfelt, T. Hökfelt, Å. Ljungdahl, Å. Ljungdahl, H. Steinbusch, H. Steinbusch, A. Verhofstad, A. Verhofstad, G. Nilsson, G. Nilsson, E. Brodin, E. Brodin, B. Pernow, B. Pernow, M. Goldstein (1978)
Immunohistochemical evidence of substance P-like immunoreactivity in some 5-hydroxytryptamine-containing neurons in the rat central nervous systemNeuroscience, 3
T. Hökfelt, A. Ljungdahl, H. Steinbusch, A. Verhofstad, G. Nilsson, E. Brodin, B. Pernow, M. Goldstein (1978)
Immunohistochemical evidence of substance P‐like immunoreactivity in some 5‐hydroxytryptamine‐containing neurons, 3
K. Seroogy, N. Brecha, C. Gall (1985)
Distribution of cholecystokinin‐like immunoreactivity in the rat main olfactory bulbJournal of Comparative Neurology, 239
E. Mugnaini, W. Oertel, Floris Wouterlood (1984)
Immunocytochemical localization of GABA neurons and dopamine neurons in the rat main and accessory olfactory bulbsNeuroscience Letters, 47
K. Kosaka, K. Hama, I. Nagatsu, Jang-Yen Wu, O. Ottersen, J. Storm-Mathisen, T. Kosaka (1987)
Postnatal development of neurons containing both catecholaminergic and GABAergic traits in the rat main olfactory bulbBrain Research, 403
M. Nowycky, N. Hálasz, G. Shepherd (1983)
Evoked field potential analysis of dopaminergic mechanisms in the isolated turtle olfactory bulbNeuroscience, 8
V. Chan‐Palay, A. Engel, J. Wu, S. Palay (1982)
Coexistence in human and primate neuromuscular junctions of enzymes synthesizing acetylcholine, catecholamine, taurine, and gamma-aminobutyric acid.Proceedings of the National Academy of Sciences of the United States of America, 79 22
E. Glazer, H. Steinbusch, A. Verhofstad, A. Basbaum (1981)
Serotonin neurons in nucleus raphe dorsalis and paragigantocellularis of the cat contain enkephalin.Journal de physiologie, 77 2-3
N. Hálasz, T. Hökfelt, Å. Ljungdahl, O. Johansson, M. Goldstein (1977)
Dopamine neurons in the olfactory bulb.Advances in biochemical psychopharmacology, 16
C. Gall, S. H. C. Hendry, K. B. Seroogy, E. G. Jones (1985)
Colocalization of GABA‐ and tyrosine hydroxylase‐like immunoreactivities in neurons of the rat olfactory bulb, 15
T. Kosaka, K. Kosaka, K. Tateishi, Yoshiyuki Hamaoka, N. Yanaihara, Jan‐Yen Wu, K. Hama (1985)
GABAergic neurons containing CCK‐8‐like and/or VIP‐like immunoreactivities in the rat hippocampus and dentate gyrusJournal of Comparative Neurology, 239
T. Hökfelt, J. Rehfeld, L. Skirboll, B. Ivemark, M. Goldstein, K. Markey (1980)
Evidence for coexistence of dopamine and CCK in meso-limbic neuronesNature, 285
N. Halász, T. Hökfelt, A. Ljungdahl, O. Johansson, M. Goldstein (1977)
Advances in Biochemical Psychopharmacology, 16
T. Kosaka, Y. Hataguchi, K. Hama, I. Nagatsu, Wu Jang-Yen (1985)
Coexistence of immunoreactivities for glutamate decar☐ylase and tyrosine hydroxylase in some neurons in the periglomerular region of the rat main olfactory bulb: possible coexistence of gamma-aminobutyric acid (GABA) and dopamineBrain Research, 343
O. Ottersen, J. Storm-Mathisen (1984)
Glutamate‐ and GABA‐containing neurons in the mouse and rat brain, as demonstrated with a new immunocytochemical techniqueJournal of Comparative Neurology, 229
E. Orona, Elizabeth Rainer, J. Scott (1984)
Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulbJournal of Comparative Neurology, 226
G. Shepherd (1979)
The Synaptic Organization of the Brain
S. Hendry, E. Jones, J. DeFelipe, D. Schmechel, C. Brandon, P. Emson (1984)
Neuropeptide-containing neurons of the cerebral cortex are also GABAergic.Proceedings of the National Academy of Sciences of the United States of America, 81 20
N. Bogan, N. Brecha, C. Gall, H. Karten (1982)
Distribution of enkephalin-like immunoreactivity in the rat main olfactory bulbNeuroscience, 7
V. Chan‐Palay, G. Jonsson, S. Palay (1978)
Serotonin and substance P coexist i, neurons of the rat's central nervous system.Proceedings of the National Academy of Sciences of the United States of America, 75 3
V. Chan‐Palay, Andrew Engelo, JANG-YEN Wut, S. Palay
Coexistence in human and primate neuromuscular junctions of enzymes synthesizing acetylcholine , catecholamine , taurine , and y-aminobutyric acid ( immunocytochemistry / choline acetyltransferase / tyrosine hydroxylase / cysteine sulfinic acid decarboxylase / glutamic acid decarboxylase )
Baker (1983)
69J. Neurosci., 3
P. Somogyi, A. Hodgson, A. Smith, M. Nunzi, A. Gorio, J. Wu (1984)
Different populations of GABAergic neurons in the visual cortex and hippocampus of cat contain somatostatin- or cholecystokinin- immunoreactive material, 4
G. Shepherd (1971)
Physiological evidence for dendrodendritic synaptic interactions in the rabbit's olfactory glomerulus.Brain research, 32 1
B. Everitt, T. Hökfelt, L. Terenius, K. Tatemoto, V. Mutt, M. Goldstein (1984)
Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the ratNeuroscience, 11
Belin (1983)
329Brain Res., 275
R. Mair (1982)
Adaptation of rat olfactory bulb neurones.The Journal of Physiology, 326
B. Alger, R. Nicoll (1982)
Pharmacological evidence for two kinds of GABA receptors on rat hippocampal pyramidal cells studied in vitroThe Journal of Physiology, 328
B. Everitt, T. Hökfelt, J. Wu, M. Goldstein (1984)
Coexistence of tyrosine hydroxylase-like and gamma-aminobutyric acid-like immunoreactivities in neurons of the arcuate nucleus.Neuroendocrinology, 39 2
S. Schneider, F. Macrides (1978)
Laminar distributions of interneurons in the main olfactory bulb of the adult hamsterBrain Research Bulletin, 3
W. Freeman (1974)
Relation of glomerular neuronal activity to glomerular transmission attenuation.Brain research, 65 1
N. Hálasz, N. Hálasz, G. Shepherd (1983)
Neurochemistry of the vertebrate olfactory bulbNeuroscience, 10
W. Oertel, A. Graybiel, E. Mugnaini, R. Elde, D. Schmechel, I. Kopin (1983)
Coexistence of glutamic acid decarboxylase- and somatostatin-like immunoreactivity in neurons of the feline nucleus reticularis thalami, 3
Immunoreactivities for γ‐aminobutyric acid (GABA) and the dopaminesynthesizing enzyme tyrosine hydroxylase (TH) wore localized ultrastructurally and colocalized at the light microscopic level in neurons of the rat main olfactory bulb. By means of a simultaneous indirect immunofluorescence technique, GABA and TH immunoreactivities were found to coexist in a large number of neurons in the glomerular and external plexiform layers. Virtually all the TH‐immunoreactive periglomerular neurons also contained GABA immunoreactivity (GABA‐I) while there was an additional number of GABA‐immunoreactive periglomerular cells (27%) which did not contain TH immunoreactivity (TH‐I). In contrast, the numerous tufted‐type neurons in the glomerular and superficial external plexiform layers which contained TH‐I did not contain GABA‐I. In the external plexiform layer (EPL), 41% of the immunoreactive neurons contained GABA‐I alone, 24% contained TH‐I alone, and 35% contained both. EPL neurons containing GABA‐I only or both GABA‐I and TH‐I never exhibited tufted cell morphological characteristics and were generally of the short‐axon type. Electron microscopic examination of GABA‐I and TH‐I elements in the glomerular layer detected morphologically similar periglomerular perikarya and intraglomerular processes immunoreactive for each substance and other neurons and processes of the same type containing neither GABA‐I or TH‐I. These data indicate that the classical neurotransmitters GABA and dopamine coexist in large numbers of neurons in the rat main olfactory bulb including characteristic periglomerular cells and certain other local‐circuit neuronal types.
The Journal of Comparative Neurology – Wiley
Published: Mar 15, 1988
Keywords: ; ; ; ;
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.