Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
The goal of this study is to use principal component analysis (PCA) for multivariate analysis of proteome dynamics based on both protein abundance and turnover information generated by high-resolution mass spec- trometry. We previously reported assessing protein dynamics in iron-starved Mycobacterium tuberculosis, re- vealing interesting interconnection among the cellular processes involving protein synthesis, degradation, and secretion (Anal. Chem. 80, 6860-9). In this study, we use target-decoy database search approach to select peptides for quantitation at a false discovery rate of 4.2%. We further use PCA to reduce the data dimensions for simpler interpretation. The PCA results indicate that the protein turnover and relative abundance properties are approximately orthogonal in the data space defined by the first three principal components. We show the potential of the Hotelling’s T2 (T2) value as a quantifiable index for comparing changes between protein func- tional categories. The T2 value represents the gross change of a protein in both abundance and turnover. Close examination of the antigen 85 complex demonstrates that T2 correctly predicts the coordinated changes of the antigen 85 complex proteins. The multi-dimensional protein dynamics data further reveal the secretion of the antigen 85 complex. Overall, this study demonstrates PCA as an effective
Journal of Proteomics & Bioinformatics – Unpaywall
Published: Jan 10, 2009
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.