Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

optix drives the repeated convergent evolution of butterfly wing pattern mimicry.

optix drives the repeated convergent evolution of butterfly wing pattern mimicry. Mimicry--whereby warning signals in different species evolve to look similar--has long served as a paradigm of convergent evolution. Little is known, however, about the genes that underlie the evolution of mimetic phenotypes or to what extent the same or different genes drive such convergence. Here, we characterize one of the major genes responsible for mimetic wing pattern evolution in Heliconius butterflies. Mapping, gene expression, and population genetic work all identify a single gene, optix, that controls extreme red wing pattern variation across multiple species of Heliconius. Our results show that the cis-regulatory evolution of a single transcription factor can repeatedly drive the convergent evolution of complex color patterns in distantly related species, thus blurring the distinction between convergence and homology. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Science (New York, N.Y.) Pubmed

optix drives the repeated convergent evolution of butterfly wing pattern mimicry.

optix drives the repeated convergent evolution of butterfly wing pattern mimicry.


Abstract

Mimicry--whereby warning signals in different species evolve to look similar--has long served as a paradigm of convergent evolution. Little is known, however, about the genes that underlie the evolution of mimetic phenotypes or to what extent the same or different genes drive such convergence. Here, we characterize one of the major genes responsible for mimetic wing pattern evolution in Heliconius butterflies. Mapping, gene expression, and population genetic work all identify a single gene, optix, that controls extreme red wing pattern variation across multiple species of Heliconius. Our results show that the cis-regulatory evolution of a single transcription factor can repeatedly drive the convergent evolution of complex color patterns in distantly related species, thus blurring the distinction between convergence and homology.

Loading next page...
 
/lp/pubmed/optix-drives-the-repeated-convergent-evolution-of-butterfly-wing-g0lFmJlnqO

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0036-8075
eISSN
1095-9203
DOI
10.1126/science.1208227
pmid
21778360

Abstract

Mimicry--whereby warning signals in different species evolve to look similar--has long served as a paradigm of convergent evolution. Little is known, however, about the genes that underlie the evolution of mimetic phenotypes or to what extent the same or different genes drive such convergence. Here, we characterize one of the major genes responsible for mimetic wing pattern evolution in Heliconius butterflies. Mapping, gene expression, and population genetic work all identify a single gene, optix, that controls extreme red wing pattern variation across multiple species of Heliconius. Our results show that the cis-regulatory evolution of a single transcription factor can repeatedly drive the convergent evolution of complex color patterns in distantly related species, thus blurring the distinction between convergence and homology.

Journal

Science (New York, N.Y.)Pubmed

Published: Sep 7, 2011

There are no references for this article.