Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium.

Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium. After myocardial infarction (MI), the noninfarcted myocardium undergoes significant hypertrophy as part of the post-MI structural remodeling. Electrophysiological changes associated with the hypertrophied remodeled myocardium may play a key role in arrhythmia generation in the post-MI heart. We investigated the cellular and ionic basis of arrhythmias in remodeled left ventricular (LV) myocardium 3 to 4 weeks after MI in the rat. We analyzed (1) the incidence of induced ventricular tachyarrhythmias (VTs) in the in vivo heart, (2) action potential characteristics and arrhythmia mechanisms in multicellular preparations and isolated remodeled LV myocytes, and (3) the density and kinetics of the L-type Ca2+ current (ICa-L) and the fast and slow components of transient outward K+ currents (Ito-f and Ito-s, respectively). The results were compared with those from sham-operated rats. In vivo, programmed stimulation induced sustained VT in 80% of post-MI rats but not in sham-operated rats. The capacitance of post-MI hypertrophied myocytes was significantly increased compared with myocytes from sham-operated rats. Post-MI myocytes had prolonged action potential duration (APD) with marked heterogeneity of the time course of repolarization. The prolongation of APD could be explained by the significant decrease of the density of both Ito-f and Ito-s. There was no change in the kinetics of both currents compared with control. Both the density and kinetics of ICa-L were not significantly different in post-MI remodeled myocytes compared with control. The cellular studies showed that reentrant excitation secondary to dispersion of repolarization and triggered activity from both early and delayed afterdepolarizations are potential mechanisms for VT in the post-MI remodeled heart. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Circulation research Pubmed

Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium.

Circulation research , Volume 79 (3): 13 – Oct 24, 1996

Cellular and ionic basis of arrhythmias in postinfarction remodeled ventricular myocardium.


Abstract

After myocardial infarction (MI), the noninfarcted myocardium undergoes significant hypertrophy as part of the post-MI structural remodeling. Electrophysiological changes associated with the hypertrophied remodeled myocardium may play a key role in arrhythmia generation in the post-MI heart. We investigated the cellular and ionic basis of arrhythmias in remodeled left ventricular (LV) myocardium 3 to 4 weeks after MI in the rat. We analyzed (1) the incidence of induced ventricular tachyarrhythmias (VTs) in the in vivo heart, (2) action potential characteristics and arrhythmia mechanisms in multicellular preparations and isolated remodeled LV myocytes, and (3) the density and kinetics of the L-type Ca2+ current (ICa-L) and the fast and slow components of transient outward K+ currents (Ito-f and Ito-s, respectively). The results were compared with those from sham-operated rats. In vivo, programmed stimulation induced sustained VT in 80% of post-MI rats but not in sham-operated rats. The capacitance of post-MI hypertrophied myocytes was significantly increased compared with myocytes from sham-operated rats. Post-MI myocytes had prolonged action potential duration (APD) with marked heterogeneity of the time course of repolarization. The prolongation of APD could be explained by the significant decrease of the density of both Ito-f and Ito-s. There was no change in the kinetics of both currents compared with control. Both the density and kinetics of ICa-L were not significantly different in post-MI remodeled myocytes compared with control. The cellular studies showed that reentrant excitation secondary to dispersion of repolarization and triggered activity from both early and delayed afterdepolarizations are potential mechanisms for VT in the post-MI remodeled heart.

Loading next page...
 
/lp/pubmed/cellular-and-ionic-basis-of-arrhythmias-in-postinfarction-remodeled-g0Zm7DXKrZ

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0009-7330
DOI
10.1161/01.res.79.3.461
pmid
8781480

Abstract

After myocardial infarction (MI), the noninfarcted myocardium undergoes significant hypertrophy as part of the post-MI structural remodeling. Electrophysiological changes associated with the hypertrophied remodeled myocardium may play a key role in arrhythmia generation in the post-MI heart. We investigated the cellular and ionic basis of arrhythmias in remodeled left ventricular (LV) myocardium 3 to 4 weeks after MI in the rat. We analyzed (1) the incidence of induced ventricular tachyarrhythmias (VTs) in the in vivo heart, (2) action potential characteristics and arrhythmia mechanisms in multicellular preparations and isolated remodeled LV myocytes, and (3) the density and kinetics of the L-type Ca2+ current (ICa-L) and the fast and slow components of transient outward K+ currents (Ito-f and Ito-s, respectively). The results were compared with those from sham-operated rats. In vivo, programmed stimulation induced sustained VT in 80% of post-MI rats but not in sham-operated rats. The capacitance of post-MI hypertrophied myocytes was significantly increased compared with myocytes from sham-operated rats. Post-MI myocytes had prolonged action potential duration (APD) with marked heterogeneity of the time course of repolarization. The prolongation of APD could be explained by the significant decrease of the density of both Ito-f and Ito-s. There was no change in the kinetics of both currents compared with control. Both the density and kinetics of ICa-L were not significantly different in post-MI remodeled myocytes compared with control. The cellular studies showed that reentrant excitation secondary to dispersion of repolarization and triggered activity from both early and delayed afterdepolarizations are potential mechanisms for VT in the post-MI remodeled heart.

Journal

Circulation researchPubmed

Published: Oct 24, 1996

There are no references for this article.