Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Depolarization changes the mechanism of accommodation in rat and human motor axons.

Depolarization changes the mechanism of accommodation in rat and human motor axons. 1. We have previously studied accommodation in rat and human motor axons by testing excitability with combinations of long and short current pulses. We found that normally polarized axons accommodate slowly and partially (over about 50 ms) to subthreshold depolarizing currents, and that the principal mechanism is the activation of slow potassium channels (Bostock & Baker, 1988). To understand the response of human nerves to ischaemia, we have now extended these observations to axons already depolarized before the testing currents were applied. 2. Rat ventral root axons were depolarized by passing continuous currents or by raising the extracellular potassium concentration. Human forearm nerves were depolarized by ischaemia, induced by inflating a sphygmomanometer cuff on the upper arm. Depolarized rat and human motor axons accommodated much more rapidly and completely than normally polarized axons (e.g. accommodation in rat axons was 50% complete within 2 ms at about 15 mV depolarized to rest). 3. The fast component of accommodation in depolarized rat fibres was not blocked by tetraethylammonium ions or 4‐aminopyridine, was not accompanied by a conductance or potential change, and had a time constant of 1.7 ms at 30 degrees C. It was attributed to inactivation of closed sodium channels. 4. In depolarized rat fibres exhibiting fast accommodation, a brief rise in excitability was seen at the break of an anodal current. Our prediction that human motor axons would show anode‐break excitation during ischaemia was readily confirmed. 5. The results are discussed in relation to Hill's (1936) mathematical description of accommodation in nerve, and it is concluded that his description is only applicable to depolarized axons. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png The Journal of Physiology Wiley

Depolarization changes the mechanism of accommodation in rat and human motor axons.

The Journal of Physiology , Volume 411 (1) – Apr 1, 1989

Loading next page...
 
/lp/wiley/depolarization-changes-the-mechanism-of-accommodation-in-rat-and-human-fnh0boq3op

References (0)

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
Wiley
Copyright
© 2014 The Physiological Society
ISSN
0022-3751
eISSN
1469-7793
DOI
10.1113/jphysiol.1989.sp017589
Publisher site
See Article on Publisher Site

Abstract

1. We have previously studied accommodation in rat and human motor axons by testing excitability with combinations of long and short current pulses. We found that normally polarized axons accommodate slowly and partially (over about 50 ms) to subthreshold depolarizing currents, and that the principal mechanism is the activation of slow potassium channels (Bostock & Baker, 1988). To understand the response of human nerves to ischaemia, we have now extended these observations to axons already depolarized before the testing currents were applied. 2. Rat ventral root axons were depolarized by passing continuous currents or by raising the extracellular potassium concentration. Human forearm nerves were depolarized by ischaemia, induced by inflating a sphygmomanometer cuff on the upper arm. Depolarized rat and human motor axons accommodated much more rapidly and completely than normally polarized axons (e.g. accommodation in rat axons was 50% complete within 2 ms at about 15 mV depolarized to rest). 3. The fast component of accommodation in depolarized rat fibres was not blocked by tetraethylammonium ions or 4‐aminopyridine, was not accompanied by a conductance or potential change, and had a time constant of 1.7 ms at 30 degrees C. It was attributed to inactivation of closed sodium channels. 4. In depolarized rat fibres exhibiting fast accommodation, a brief rise in excitability was seen at the break of an anodal current. Our prediction that human motor axons would show anode‐break excitation during ischaemia was readily confirmed. 5. The results are discussed in relation to Hill's (1936) mathematical description of accommodation in nerve, and it is concluded that his description is only applicable to depolarized axons.

Journal

The Journal of PhysiologyWiley

Published: Apr 1, 1989

There are no references for this article.