Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

The Evolution of Life History Parameters in Teleosts

The Evolution of Life History Parameters in Teleosts <jats:p> Empirical studies have shown that in teleosts there is a significant correlation between the life history parameters, age at first reproduction, natural mortality, and growth rate. In this paper 1 hypothesize that these correlations are the result of evolutionary adjustments due to the trade-off between reproduction, growth, and survival. A simple and reasonable assumption is that the costs of reproduction are sufficient to cause the l<jats:sub>t</jats:sub>m<jats:sub>t</jats:sub> function to decrease. A simple expression relating the age at first reproduction is derived from this assumption. This formula accounts for a statistically significant portion (60.6%) of the variation in age at first reproduction in 30 stocks of fish. To extend the model to predict the distribution of life history parameters across all teleosts, an explicit cost function is incorporated. The model is analyzed with respect to two fitness measures, the expected lifetime fecundity and malthusian parameter, r. In the first case it is shown that the optimal age at maturity, T, depends only on the natural mortality rate (M) and the growth rate (k). In the second case, T is a function of k and the logarithm of a parameter, In C; the latter is a product of egg and larval survival, maximum body length (L<jats:sub>x</jats:sub>), and the proportionality coefficient of the fecundity/length function. Difficulties of measuring egg and larval survival make the testing of the latter case difficult for particular species. However, this method provides a simple formula for the computation of r; this is shown generally to be approximately zero, thereby adding strength to the assumptions of the first analysis. The distribution patterns of T on k and M on k are predicted and compared with the observed pattern. In general, the predictions are validated: however, certain combinations of k and ln C are shown to occur very infrequently. The prediction of such "empty" regions of the parameter space remains a challenge for future development of life history theory. </jats:p> http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Canadian Journal of Fisheries and Aquatic Sciences CrossRef

The Evolution of Life History Parameters in Teleosts

Canadian Journal of Fisheries and Aquatic Sciences , Volume 41 (6): 989-1000 – Jun 1, 1984

The Evolution of Life History Parameters in Teleosts


Abstract

<jats:p> Empirical studies have shown that in teleosts there is a significant correlation between the life history parameters, age at first reproduction, natural mortality, and growth rate. In this paper 1 hypothesize that these correlations are the result of evolutionary adjustments due to the trade-off between reproduction, growth, and survival. A simple and reasonable assumption is that the costs of reproduction are sufficient to cause the l<jats:sub>t</jats:sub>m<jats:sub>t</jats:sub> function to decrease. A simple expression relating the age at first reproduction is derived from this assumption. This formula accounts for a statistically significant portion (60.6%) of the variation in age at first reproduction in 30 stocks of fish. To extend the model to predict the distribution of life history parameters across all teleosts, an explicit cost function is incorporated. The model is analyzed with respect to two fitness measures, the expected lifetime fecundity and malthusian parameter, r. In the first case it is shown that the optimal age at maturity, T, depends only on the natural mortality rate (M) and the growth rate (k). In the second case, T is a function of k and the logarithm of a parameter, In C; the latter is a product of egg and larval survival, maximum body length (L<jats:sub>x</jats:sub>), and the proportionality coefficient of the fecundity/length function. Difficulties of measuring egg and larval survival make the testing of the latter case difficult for particular species. However, this method provides a simple formula for the computation of r; this is shown generally to be approximately zero, thereby adding strength to the assumptions of the first analysis. The distribution patterns of T on k and M on k are predicted and compared with the observed pattern. In general, the predictions are validated: however, certain combinations of k and ln C are shown to occur very infrequently. The prediction of such "empty" regions of the parameter space remains a challenge for future development of life history theory. </jats:p>

Loading next page...
 
/lp/crossref/the-evolution-of-life-history-parameters-in-teleosts-fNI0edL0n0

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

Publisher
CrossRef
ISSN
0706-652X
DOI
10.1139/f84-114
Publisher site
See Article on Publisher Site

Abstract

<jats:p> Empirical studies have shown that in teleosts there is a significant correlation between the life history parameters, age at first reproduction, natural mortality, and growth rate. In this paper 1 hypothesize that these correlations are the result of evolutionary adjustments due to the trade-off between reproduction, growth, and survival. A simple and reasonable assumption is that the costs of reproduction are sufficient to cause the l<jats:sub>t</jats:sub>m<jats:sub>t</jats:sub> function to decrease. A simple expression relating the age at first reproduction is derived from this assumption. This formula accounts for a statistically significant portion (60.6%) of the variation in age at first reproduction in 30 stocks of fish. To extend the model to predict the distribution of life history parameters across all teleosts, an explicit cost function is incorporated. The model is analyzed with respect to two fitness measures, the expected lifetime fecundity and malthusian parameter, r. In the first case it is shown that the optimal age at maturity, T, depends only on the natural mortality rate (M) and the growth rate (k). In the second case, T is a function of k and the logarithm of a parameter, In C; the latter is a product of egg and larval survival, maximum body length (L<jats:sub>x</jats:sub>), and the proportionality coefficient of the fecundity/length function. Difficulties of measuring egg and larval survival make the testing of the latter case difficult for particular species. However, this method provides a simple formula for the computation of r; this is shown generally to be approximately zero, thereby adding strength to the assumptions of the first analysis. The distribution patterns of T on k and M on k are predicted and compared with the observed pattern. In general, the predictions are validated: however, certain combinations of k and ln C are shown to occur very infrequently. The prediction of such "empty" regions of the parameter space remains a challenge for future development of life history theory. </jats:p>

Journal

Canadian Journal of Fisheries and Aquatic SciencesCrossRef

Published: Jun 1, 1984

There are no references for this article.