Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

RAIDD is a new 'death' adaptor molecule

RAIDD is a new 'death' adaptor molecule THE effector arm of the cell-death pathway is composed of cysteine proteases belonging to the ICE/CED-3 family1,2. In metazoan cells these exist as inactive polypeptide precursors (zymogens), each composed of a prodomain, which is cleaved to activate the protease, and a large and small catalytic subunit. The coupling of these 'death' proteases to signalling pathways is probably mediated by adaptor molecules that contain protein–protein interaction motifs such as the death domain1. Here we describe such an adaptor molecule, RAIDD, which has an unusual bipartite architecture comprising a carboxy-terminal death domain that binds to the homologous domain in RIP, a serine/threonine kinase component of the death pathway3,4. The amino-terminal domain is surprisingly homologous with the sequence of the prodomain of two ICE/CED-3 family members, human ICH-1 (ref. 5) and Caenorhabditis elegans CED-3 (ref. 6). This similar region mediates the binding of RAIDD to ICH-1 and CED-3, serving as a direct link to the death proteases, indicating that the prodomain may, through homophilic interactions, determine the specificity of binding of ICE/CED-3 zymogens to regulatory adaptor molecules. Finally, alternations in the sequence of the N-terminal domain that are equivalent to inactivating mutations in the C. elegans ced-3 gene7,8 prevent homophilic binding, highlighting the potentially primordial nature of this interaction. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Nature Springer Journals

RAIDD is a new 'death' adaptor molecule

Nature , Volume 385 (6611) – Jan 2, 1997

Loading next page...
 
/lp/springer-journals/raidd-is-a-new-death-adaptor-molecule-fFZsFn8cZO

References (15)

Publisher
Springer Journals
Copyright
Copyright © Nature Publishing Group 1997
Subject
Science, Humanities and Social Sciences, multidisciplinary; Science, Humanities and Social Sciences, multidisciplinary; Science, multidisciplinary
ISSN
0028-0836
eISSN
1476-4687
DOI
10.1038/385086a0
Publisher site
See Article on Publisher Site

Abstract

THE effector arm of the cell-death pathway is composed of cysteine proteases belonging to the ICE/CED-3 family1,2. In metazoan cells these exist as inactive polypeptide precursors (zymogens), each composed of a prodomain, which is cleaved to activate the protease, and a large and small catalytic subunit. The coupling of these 'death' proteases to signalling pathways is probably mediated by adaptor molecules that contain protein–protein interaction motifs such as the death domain1. Here we describe such an adaptor molecule, RAIDD, which has an unusual bipartite architecture comprising a carboxy-terminal death domain that binds to the homologous domain in RIP, a serine/threonine kinase component of the death pathway3,4. The amino-terminal domain is surprisingly homologous with the sequence of the prodomain of two ICE/CED-3 family members, human ICH-1 (ref. 5) and Caenorhabditis elegans CED-3 (ref. 6). This similar region mediates the binding of RAIDD to ICH-1 and CED-3, serving as a direct link to the death proteases, indicating that the prodomain may, through homophilic interactions, determine the specificity of binding of ICE/CED-3 zymogens to regulatory adaptor molecules. Finally, alternations in the sequence of the N-terminal domain that are equivalent to inactivating mutations in the C. elegans ced-3 gene7,8 prevent homophilic binding, highlighting the potentially primordial nature of this interaction.

Journal

NatureSpringer Journals

Published: Jan 2, 1997

There are no references for this article.