Access the full text.
Sign up today, get DeepDyve free for 14 days.
Diego Rua, Brian Tobe, Stephen Kron (2001)
Cell cycle control of yeast filamentous growth.Current opinion in microbiology, 4 6
B. Braun, D. Kadosh, A. Johnson (2001)
NRG1, a repressor of filamentous growth in C.albicans, is down‐regulated during filament inductionThe EMBO Journal, 20
Manuel Santos, M. Tuite (1995)
The CUG codon is decoded in vivo as serine and not leucine in Candida albicans.Nucleic acids research, 23 9
J. Bain, C. Stubberfield, N. Gow (2001)
Ura-status-dependent adhesion of Candida albicans mutants.FEMS microbiology letters, 204 2
F. Rademacher, V. Kehren, V. Stoldt, J. Ernst (1998)
A Candida albicans chaperonin subunit (CaCct8p) as a suppressor of morphogenesis and Ras phenotypes in C. albicans and Saccharomyces cerevisiae.Microbiology, 144 ( Pt 11)
M. Uhl, A. Johnson, M. Uhl, A. Johnson, Larry Mckay, Doug Kellogg (2001)
Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans.Microbiology, 147 Pt 5
K. Wolfe, D. Shields (1997)
Molecular evidence for an ancient duplication of the entire yeast genomeNature, 387
ML Berbee, JW Taylor (2000)
The Mycota
Daniel Lew, Steven Reed (1995)
Cell cycle control of morphogenesis in budding yeast.Current opinion in genetics & development, 5 1
C. Asleson, E. Bensen, C. Gale, A. Melms, C. Kurischko, J. Berman (2001)
Candida albicans INT1-Induced Filamentation in Saccharomyces cerevisiae Depends on Sla2pMolecular and Cellular Biology, 21
John Taylor, D. Geiser, A. Burt, Vassiliki Koufopanou (1999)
The Evolutionary Biology and Population Genetics Underlying Fungal Strain TypingClinical Microbiology Reviews, 12
M. McEachern, J. Hicks (1993)
Unusually large telomeric repeats in the yeast Candida albicansMolecular and Cellular Biology, 13
M. Gerami‐Nejad, J. Berman, C. Gale (2001)
Cassettes for PCR‐mediated construction of green, yellow, and cyan fluorescent protein fusions in Candida albicansYeast, 18
E. Rustchenko, F. Sherman (1994)
Physical constitution of ribosomal genes in common strains of Saccharomyces cerevisiaeYeast, 10
Stewart, '. Scherer, A. Magee (1990)
Genetics of Candida albicans.Microbiological reviews, 54 3
J. Morschhäuser, S. Michel, P. Staib (1999)
Sequential gene disruption in Candida albicans by FLP‐mediated site‐specific recombinationMolecular Microbiology, 32
D. Soll (1992)
High-frequency switching in Candida albicansClinical Microbiology Reviews, 5
V. Perepnikhatka, F. Fischer, M. Niimi, R. Baker, R. Cannon, Ying‐Kai Wang, F. Sherman, E. Rustchenko (1999)
Specific Chromosome Alterations in Fluconazole-Resistant Mutants of Candida albicansJournal of Bacteriology, 181
Cheryl Gale, C. Bendel, Mark McClellan, M. Hauser, Jeffrey Becker, Judith Berman, Margaret Hostetter (1998)
Linkage of adhesion, filamentous growth, and virulence in Candida albicans to a single gene, INT1.Science, 279 5355
Malcolm Whiteway, D. Dignard, D. Thomas (1992)
Dominant negative selection of heterologous genes: isolation of Candida albicans genes that interfere with Saccharomyces cerevisiae mating factor-induced cell cycle arrest.Proceedings of the National Academy of Sciences of the United States of America, 89
S. Delbrück, J. Ernst (1993)
Morphogenesis‐independent regulation of actin transcript levels in the pathogenic yeast Candida albicansMolecular Microbiology, 10
D. Kirsch, Rita Whitney (1991)
Pathogenicity of Candida albicans auxotrophic mutants in experimental infectionsInfection and Immunity, 59
R. Care, J. Trevethick, K. Binley, P. Sudbery (1999)
The MET3 promoter: a new tool for Candida albicans molecular geneticsMolecular Microbiology, 34
C. Beck-Sague, W. Jarvis (1993)
Secular trends in the epidemiology of nosocomial fungal infections in the United States, 1980-1990. National Nosocomial Infections Surveillance System.The Journal of infectious diseases, 167 5
Daniel Heckman, D. Geiser, Brooke Eidell, R. Stauffer, Natalie Kardos, S. Hedges (2001)
Molecular Evidence for the Early Colonization of Land by Fungi and PlantsScience, 293
Cheryl Gale, David Finkel, Nian-jun Tao, Marilyn Meinke, Mark McClellan, Jennifer Olson, Kathleen Kendrick, Margaret Hostetter (1996)
Cloning and expression of a gene encoding an integrin-like protein in Candida albicans.Proceedings of the National Academy of Sciences of the United States of America, 93 1
B. Braun, A. Johnson (1997)
Control of filament formation in Candida albicans by the transcriptional repressor TUP1.Science, 277 5322
Catherine Thrash-Bingham, J. Gorman (1992)
DNA translocations contribute to chromosome length polymorphisms in Candida albicansCurrent Genetics, 22
J. Lay, L. Henry, J. Clifford, Y. Koltin, Christine Bulawa, Jeffrey Becker (1998)
Altered Expression of Selectable Marker URA3 in Gene-Disrupted Candida albicans Strains Complicates Interpretation of Virulence StudiesInfection and Immunity, 66
LE Cowen (2002)
Population genomics of drug resistance in experimental populations of Candida albicansProc. Natl Acad. Sci. USA, 99
G. Bertram, R. Swoboda, G. Gooday, N. Gow, A. Brown (1996)
Structure and regulation of the Candida albicans ADH1 gene encoding an immunogenic alcohol dehydrogenaseYeast, 12
D. Davis, J. Edwards, A. Mitchell, A. Ibrahim (2000)
Candida albicans RIM101 pH Response Pathway Is Required for Host-Pathogen InteractionsInfection and Immunity, 68
A. Nantel, D. Dignard, C. Bachewich, D. Harcus, A. Marcil, A. Bouin, C. Sensen, Hervé Hogues, Marco Hoog, P. Gordon, Tracey Rigby, François Benoit, D. Tessier, David Thomas, M. Whiteway (2002)
Transcription profiling of Candida albicans cells undergoing the yeast-to-hyphal transition.Molecular biology of the cell, 13 10
Sunitha Singh, O. Steinberg-Neifach, I. Mian, N. Lue (2002)
Analysis of Telomerase in Candida albicans: Potential Role in Telomere End ProtectionEukaryotic Cell, 1
S. Lane, Charlie Birse, Song Zhou, R. Matson, Haopin Liu (2001)
DNA Array Studies Demonstrate Convergent Regulation of Virulence Factors by Cph1, Cph2, and Efg1 in Candida albicans *The Journal of Biological Chemistry, 276
Brian Enloe, A. Diamond, A. Mitchell (2000)
A Single-Transformation Gene Function Test in DiploidCandida albicansJournal of Bacteriology, 182
E. Rustchenko, T. Curran, F. Sherman (1993)
Variations in the number of ribosomal DNA units in morphological mutants and normal strains of Candida albicans and in normal strains of Saccharomyces cerevisiaeJournal of Bacteriology, 175
B. Magee, P. Magee (1987)
Electrophoretic karyotypes and chromosome numbers in Candida species.Journal of general microbiology, 133 2
E. Bensen, S. Filler, J. Berman (2002)
A Forkhead Transcription Factor Is Important for True Hyphal as well as Yeast Morphogenesis in Candida albicansEukaryotic Cell, 1
T. Rustad, D. Stevens, M. Pfaller, T. White (2002)
Homozygosity at the Candida albicans MTL locus associated with azole resistance.Microbiology, 148 Pt 4
Q. Feng, E. Summers, B. Guo, Gerald Fink (1999)
Ras Signaling Is Required for Serum-Induced Hyphal Differentiation in Candida albicansJournal of Bacteriology, 181
J. Loeb, M. Sepulveda-Becerra, I. Hazan, Haopin Liu (1999)
A G1 Cyclin Is Necessary for Maintenance of Filamentous Growth in Candida albicansMolecular and Cellular Biology, 19
Yue Fu, S. Filler, B. Spellberg, W. Fonzi, A. Ibrahim, T. Kanbe, M. Ghannoum, J. Edwards (1998)
Cloning and Characterization ofCAD1/AAF1, a Gene from Candida albicans That Induces Adherence to Endothelial Cells after Expression inSaccharomyces cerevisiaeInfection and Immunity, 66
AJP Brown (2002)
Candida and Candidiasis
A. Murad, C. d’Enfert, C. Gaillardin, H. Tournu, F. Tekaia, D. Talibi, D. Maréchal, Véronique Marchais, J. Cottin, A. Brown (2001)
Transcript profiling in Candida albicans reveals new cellular functions for the transcriptional repressors CaTup1, CaMig1 and CaNrg1Molecular Microbiology, 42
I. Hazan, M. Sepulveda-Becerra, Haopin Liu (2002)
Hyphal elongation is regulated independently of cell cycle in Candida albicans.Molecular biology of the cell, 13 1
R. Wilson, D. Davis, Brian Enloe, A. Mitchell (2000)
A recyclable Candida albicans URA3 cassette for PCR product‐directed gene disruptionsYeast, 16
C. Leuker, Anja Sonneborn, S. Delbrück, Joachim Ernst (1997)
Sequence and promoter regulation of the PCK1 gene encoding phosphoenolpyruvate carboxykinase of the fungal pathogen Candida albicans.Gene, 192 2
D. Irwin, W. Fonzi, D. Ho, S. Sag (1993)
Isogenic strain construction and gene mapping in Candida albicans.Genetics, 134 3
B. Braun, A. Johnson (2000)
TUP1, CPH1 and EFG1 make independent contributions to filamentation in candida albicans.Genetics, 155 1
P. Sundstrom, J. Cutler, J. Staab (2002)
Reevaluation of the Role of HWP1 in Systemic Candidiasis by Use of Candida albicans Strains with Selectable Marker URA3 Targeted to the ENO1 LocusInfection and Immunity, 70
DH Brown, IV Slobodkin, CA Kumamoto (1996)
Stable transformation and regulated expression of an inducible reporter construct in Candida albicans using restriction enzyme-mediated integrationMol. Gen. Genet., 251
B. Braun, W. Head, Ming Wang, A. Johnson (2000)
Identification and characterization of TUP1-regulated genes in Candida albicans.Genetics, 156 1
S. Lockhart, M. Nguyen, T. Srikantha, D. Soll (1998)
A MADS Box Protein Consensus Binding Site Is Necessary and Sufficient for Activation of the Opaque-Phase-Specific Gene OP4 of Candida albicansJournal of Bacteriology, 180
F. Odds (1979)
Candida and candidosis
WEN-SHEN Chu, B. B., Magee, P. Magee, M. McEachern (1993)
Construction of an SfiI macrorestriction map of the Candida albicans genomeJournal of Bacteriology, 175
Marianne Backer, Paul Magee, Jesus Pla (2000)
Recent developments in molecular genetics of Candida albicans.Annual review of microbiology, 54
Douglas Brown, I. Slobodkin, C. Kumamoto (1996)
Stable transformation and regulated expression of an inducible reporter construct inMolecular Genetics and Genomics, 251
A. Wach (1996)
PCR‐synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiaeYeast, 12
T. Srikantha, Luong Tsai, K. Daniels, A. Klar, D. Soll (2001)
The Histone Deacetylase Genes HDA1 andRPD3 Play Distinct Roles in Regulation of High-Frequency Phenotypic Switching in Candida albicansJournal of Bacteriology, 183
C. Leuker, A. Hahn, J. Ernst (1992)
β-Galactosidase of Kluyveromyces lactis (Lac4p) as reporter of gene expression in Candida albicans and C. tropicalisMolecular and General Genetics MGG, 235
K. Tzung, Roy Williams, S. Scherer, N. Federspiel, Ted Jones, N. Hansen, Vesna Bivolarevic, L. Huizar, C. Komp, Raymond Surzycki, R. Tamse, Ronald Davis, N. Agabian (2001)
Genomic evidence for a complete sexual cycle in Candida albicansProceedings of the National Academy of Sciences of the United States of America, 98
Anneke Metz, R. Love, G. Strobel, D. Long (2001)
Two telomerase reverse transcriptases (TERTs) expressed in Candida albicansBiotechnology and Applied Biochemistry, 34
N. Gow, A. Brown, F. Odds (2002)
Fungal morphogenesis and host invasion.Current opinion in microbiology, 5 4
J. Beckerman, H. Chibana, J. Turner, P. Magee (2001)
Single-Copy IMH3 Allele Is Sufficient To Confer Resistance to Mycophenolic Acid in Candida albicans and To Mediate Transformation of Clinical Candida SpeciesInfection and Immunity, 69
J. Staab, Steven Bradway, P. Fidel, P. Sundstrom (1999)
Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1.Science, 283 5407
Anja Sonneborn, Bernd Tebarth, J. Ernst (1999)
Control of White-Opaque Phenotypic Switching inCandida albicans by the Efg1p Morphogenetic RegulatorInfection and Immunity, 67
B. Magee, P. Magee (2000)
Induction of mating in Candida albicans by construction of MTLa and MTLalpha strains.Science, 289 5477
D. Bailey, P. Feldmann, Mary Bovey, N. Gow, Andalistair Brown (1996)
The Candida albicans HYR1 gene, which is activated in response to hyphal development, belongs to a gene family encoding yeast cell wall proteinsJournal of Bacteriology, 178
M. Backer, T. Ilyina, Xiao-Jun Ma, S. Vandoninck, W. Luyten, H. Bossche (2001)
Genomic Profiling of the Response of Candida albicans to Itraconazole Treatment Using a DNA MicroarrayAntimicrobial Agents and Chemotherapy, 45
B. Slutsky, J. Buffo, D. Soll (1985)
High-frequency switching of colony morphology in Candida albicans.Science, 230 4726
C. Seoighe, N. Federspiel, Ted Jones, N. Hansen, Vesna Bivolarovic, Raymond Surzycki, R. Tamse, C. Komp, L. Huizar, Ronald Davis, S. Scherer, E. Tait, D. Shaw, D. Harris, L. Murphy, K. Oliver, Kate Taylor, M. Rajandream, B. Barrell, K. Wolfe (2000)
Prevalence of small inversions in yeast gene order evolution.Proceedings of the National Academy of Sciences of the United States of America, 97 26
Christina Hull, Ryan Raisner, A. Johnson (2000)
Evidence for mating of the "asexual" yeast Candida albicans in a mammalian host.Science, 289 5477
A. Murad, P. Leng, M. Straffon, J. Wishart, S. Macaskill, D. MacCallum, N. Schnell, D. Talibi, D. Maréchal, F. Tekaia, C. d’Enfert, C. Gaillardin, F. Odds, A. Brown (2001)
NRG1 represses yeast–hypha morphogenesis and hypha‐specific gene expression in Candida albicansThe EMBO Journal, 20
J. Gorman, W. Chan, J. Gorman (1991)
Repeated use of GAL1 for gene disruption in Candida albicans.Genetics, 129 1
M. Backer, B. Nelissen, M. Logghe, J. Viaene, Inge Loonen, S. Vandoninck, R. Hoogt, S. Dewaele, Fermin Simons, P. Verhasselt, G. Vanhoof, R. Contreras, W. Luyten (2001)
An antisense-based functional genomics approach for identification of genes critical for growth of Candida albicansNature Biotechnology, 19
C. Gale, M. Gerami‐Nejad, M. McClellan, S. Vandoninck, M. Longtine, J. Berman (2001)
Candida albicans Int1p interacts with the septin ring in yeast and hyphal cells.Molecular biology of the cell, 12 11
G. Janbon, F. Sherman, E. Rustchenko (1998)
Monosomy of a specific chromosome determines L-sorbose utilization: a novel regulatory mechanism in Candida albicans.Proceedings of the National Academy of Sciences of the United States of America, 95 9
E. Leberer, D. Harcus, Ian Broadbent, Karen Clark, Karen Clark, D. Dignard, Karl Ziegelbauer, Axel Schmidt, N. Gow, Alistair Brown, D. Thomas (1996)
Signal transduction through homologs of the Ste20p and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans.Proceedings of the National Academy of Sciences of the United States of America, 93 23
A. Chindamporn, Y. Nakagawa, I. Mizuguchi, H. Chibana, Matsuko Doi, Kenji Tanaka (1998)
Repetitive sequences (RPSs) in the chromosomes of Candida albicans are sandwiched between two novel stretches, HOK and RB2, common to each chromosome.Microbiology, 144 ( Pt 4)
Haopin Liu, Julia Köhler, G. Fink (1994)
Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog.Science, 266 5191
J. Pla, R. Pérez-Díaz, F. Navarro-García, Miguel Sánchez, C. Nombela (1995)
Cloning of the Candida albicans HIS1 gene by direct complementation of a C. albicans histidine auxotroph using an improved double-ARS shuttle vector.Gene, 165 1
Christina Hull, A. Johnson (1999)
Identification of a mating type-like locus in the asexual pathogenic yeast Candida albicans.Science, 285 5431
P. Sudbery (2001)
The germ tubes of Candida albicans hyphae and pseudohyphae show different patterns of septin ring localizationMolecular Microbiology, 41
Mathew Miller, A. Johnson (2002)
White-Opaque Switching in Candida albicans Is Controlled by Mating-Type Locus Homeodomain Proteins and Allows Efficient MatingCell, 110
H. Chibana, J. Beckerman, P. Magee (2000)
Fine-resolution physical mapping of genomic diversity in Candida albicans.Genome research, 10 12
Lisa Laprade, V. Boyartchuk, W. Dietrich, F. Winston (2002)
Spt3 plays opposite roles in filamentous growth in Saccharomyces cerevisiae and Candida albicans and is required for C. albicans virulence.Genetics, 161 2
Rui Zhao, S. Lockhart, K. Daniels, D. Soll (2002)
Roles of TUP1 in Switching, Phase Maintenance, and Phase-Specific Gene Expression in Candida albicansEukaryotic Cell, 1
R. Wilson, D. Davis, A. Mitchell (1999)
Rapid Hypothesis Testing with Candida albicans through Gene Disruption with Short Homology RegionsJournal of Bacteriology, 181
T. Srikantha, Aimee Klapach, W. Lorenz, Luong Tsai, Laura Laughlin, Jessica Gorman, D. Soll (1996)
The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicansJournal of Bacteriology, 178
L. Merson-Davies, F. Odds (1989)
A morphology index for characterization of cell shape in Candida albicans.Journal of general microbiology, 135 11
Gina Devasahayam, V. Chaturvedi, S. Hanes (2002)
The Ess1 prolyl isomerase is required for growth and morphogenetic switching in Candida albicans.Genetics, 160 1
Douglas Jr, Angela Giusani, Xi Chen, C. Kumamoto (1999)
Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 geneMolecular Microbiology, 34
N. Gaur, S. Klotz (1997)
Expression, cloning, and characterization of a Candida albicans gene, ALA1, that confers adherence properties upon Saccharomyces cerevisiae for extracellular matrix proteinsInfection and Immunity, 65
Yue Fu, G. Rieg, W. Fonzi, P. Belanger, J. Edwards, S. Filler (1998)
Expression of the Candida albicans GeneALS1 in Saccharomyces cerevisiae Induces Adherence to Endothelial and Epithelial CellsInfection and Immunity, 66
Matthew Biery, F. Stewart, A. Stellwagen, A. Stellwagen, E. Raleigh, N. Craig (2000)
A simple in vitro Tn7-based transposition system with low target site selectivity for genome and gene analysis.Nucleic acids research, 28 5
A. Klar, T. Srikantha, D. Soll (2001)
A histone deacetylation inhibitor and mutant promote colony-type switching of the human pathogen Candida albicans.Genetics, 158 2
M. Lorenz, G. Fink (2001)
The glyoxylate cycle is required for fungal virulenceNature, 412
Haopin Liu (2001)
Transcriptional control of dimorphism in Candida albicans.Current opinion in microbiology, 4 6
A. Geber, P. Williamson, J. Rex, Erin Sweeney, J. Bennett (1992)
Cloning and characterization of a Candida albicans maltase gene involved in sucrose utilizationJournal of Bacteriology, 174
P. Staib, M. Kretschmar, T. Nichterlein, G. Köhler, S. Michel, H. Hof, J. Hacker, J. Morschhäuser (1999)
Host‐induced, stage‐specific virulence gene activation in Candida albicans during infectionMolecular Microbiology, 32
B. Wickes, Jeff Staudinger, B. Magee, K Kwon-Chung, P. Magee, S. Scherer (1991)
Physical and genetic mapping of Candida albicans: several genes previously assigned to chromosome 1 map to chromosome R, the rDNA-containing linkage groupInfection and Immunity, 59
Chen Bai, N. Ramanan, Yan Wang, Yue Wang (2002)
Spindle assembly checkpoint component CaMad2p is indispensable for Candida albicans survival and virulence in miceMolecular Microbiology, 45
D. Kadosh, A. Johnson (2001)
Rfg1, a Protein Related to the Saccharomyces cerevisiae Hypoxic Regulator Rox1, Controls Filamentous Growth and Virulence in Candida albicansMolecular and Cellular Biology, 21
P. Magee, Linda Bowdin, Jeff Staudinger (1992)
Comparison of molecular typing methods for Candida albicansJournal of Clinical Microbiology, 30
Hironobu Nakayama, T. Mio, S. Nagahashi, M. Kokado, M. Arisawa, Y. Aoki (2000)
Tetracycline-Regulatable System To Tightly Control Gene Expression in the Pathogenic Fungus Candida albicansInfection and Immunity, 68
J. Morschhäuser, S. Michel, J. Hacker (1998)
Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulationMolecular and General Genetics MGG, 257
Julia Köhler, G. Fink (1996)
Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal development.Proceedings of the National Academy of Sciences of the United States of America, 93 23
L. Miller, R. Hajjeh, J. Edwards (2001)
Estimating the cost of nosocomial candidemia in the united states.Clinical infectious diseases : an official publication of the Infectious Diseases Society of America, 32 7
P. Riggle, K. Andrutis, Xi Chen, S. Tzipori, C. Kumamoto (1999)
Invasive Lesions Containing Filamentous Forms Produced by a Candida albicans Mutant That Is Defective in Filamentous Growth in CultureInfection and Immunity, 67
T. Hughes, C. Roberts, H. Dai, Allan Jones, Michael Meyer, D. Slade, J. Burchard, Sally Dow, T. Ward, M. Kidd, S. Friend, M. Marton (2000)
Widespread aneuploidy revealed by DNA microarray expression profilingNature Genetics, 25
Gerwald Köhler, Theodore White, Nina Agabian (1997)
Overexpression of a cloned IMP dehydrogenase gene of Candida albicans confers resistance to the specific inhibitor mycophenolic acidJournal of Bacteriology, 179
R. Pomés, C. Gil, C. Nombela (1985)
Genetic analysis of Candida albicans morphological mutants.Journal of general microbiology, 131 8
L. Cowen, A. Nantel, M. Whiteway, David Thomas, D. Tessier, L. Kohn, James Anderson (2002)
Population genomics of drug resistance in Candida albicansProceedings of the National Academy of Sciences of the United States of America, 99
A. Barkani, O. Kurzai, W. Fonzi, A. Ramón, A. Porta, M. Frosch, F. Mühlschlegel (2000)
Dominant Active Alleles of RIM101(PRR2) Bypass the pH Restriction on Filamentation ofCandida albicansMolecular and Cellular Biology, 20
H. Lo, J. Köhler, B. Didomenico, D. Loebenberg, A. Cacciapuoti, G. Fink (1997)
Nonfilamentous C. albicans Mutants Are AvirulentCell, 90
B. Cormack, G. Bertram, M. Egerton, N. Gow, S. Falkow, S. Falkow, A. Brown (1997)
Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans.Microbiology, 143 ( Pt 2)
W. Merz, C. Connelly, P. Hieter (1988)
Variation of electrophoretic karyotypes among clinical isolates of Candida albicansJournal of Clinical Microbiology, 26
A Geber, PR Williamson, JH Rex, EC Sweeney, JE Bennett (1992)
Cloning and characterization of a maltase gene involved in sucrose utilizationJ. Bacteriol., 174
The analysis of Candida albicans is complicated by the lack of a complete sexual cycle, which obviates classical genetic approaches, and by the use of an unconventional codon, which prohibits the use of heterologous genes. The availability of the C. albicans genome sequence (×10.4 coverage) has facilitated reverse-genetic and genomic approaches for investigating C. albicans biology. Transformation using a recyclable URA3 marker or PCR-mediated gene targeting with several recently available selectable markers and codon-optimized epitopes has improved the ability to generate genetically altered C. albicans strains. The C. albicans genome sequence has identified many Saccharomyces cerevisiae homologues, as well as many genes with no obvious homologue in S. cerevisiae. Genes that differ from S. cerevisiae might have an important role in virulence. C. albicans grows as yeast, pseudohyphae (elongated budded cells) or true hyphae (cells with parallel sides and no constriction at the site of septation). True hyphae are fundamentally different from pseudohyphae and yeast in the organization of the cell cycle. Morphogenesis is regulated by cell-cycle regulators, such as the major cyclin-dependent kinase Fkh2, which is a transcriptional regulator of B-cyclin expression, and Mad2, which is a spindle checkpoint protein. Although Mad2 is not required for growth in vitro it is important for virulence in mice, indicating that modulation of cell-cycle events might be especially important for C. albicans cells growing in a mammalian host. Different environmental conditions, such as high temperature, high pH and the presence of serum, induce yeast cells to form true hyphae. The cAMP and the mating-pheromone-response–MAP-kinase–signal-transduction pathways target transcription factors, such as Efg1 and Cph1, that promote morphogenesis. The Rim101 pathway responds to pH and the Czf1 pathway responds to the presence of solid matrix. Several partial-genome array studies, and recently reported whole-genome microarray studies, are uncovering genes the transcription of which changes on exposure to anti-fungal drugs or during the yeast-to-hyphal transition. C. albicans has mating-type-like (MTL) genes that resemble S. cerevisiae mating-type genes, and diploid cells that carry only one type of MTL gene can fuse with cells of the opposite mating type to form recombinant tetraploids. The mechanism by which diploids are regenerated is not known. Several systems of phenotypic switching — the epigenetic alteration of colony phenotypes — exist in Candida species. The best-studied phenotypic switching system is the switch between white and opaque colony morphology. The molecular and genomic tools are now in place to enable direct studies of C. albicans that will provide a deeper understanding of pathways and genes, including those that are important for pathogenesis.
Nature Reviews Genetics – Springer Journals
Published: Dec 1, 2002
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.