Access the full text.
Sign up today, get DeepDyve free for 14 days.
References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.
Radical social movements are broadly engaged in, and dedicated to, promoting change in their social environment. In their corresponding efforts to call attention to various causes, communicate with like-minded groups, and mobilize support for their activities, radical social movements also produce an enormous amount of text. These texts, like radical social movements themselves, are often (i) densely connected and (ii) highly variable in advocated protest activities. Given a corpus of radical social movement texts, can one uncover the underlying network structure of the radical activist groups involved in this movement? If so, can one then also identify which groups (and which subnetworks) are more prone to radical versus mainstream protest activities? Using a large corpus of British radical environmentalist texts (1992–2003), we seek to answer these questions through a novel integration of network discovery and unsupervised topic modeling. In doing so, we apply classic network descriptives (e.g., centrality measures) and more modern statistical models (e.g., exponential random graph models) to carefully parse apart these questions. Our findings provide a number of revealing insights into the networks and nature of radical environmentalists and their texts.
Sociological Methods & Research – SAGE
Published: Nov 1, 2019
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.