Access the full text.
Sign up today, get DeepDyve free for 14 days.
S. Capsoni, S. Giannotta, A. Cattaneo (2002)
β-Amyloid Plaques in a Model for Sporadic Alzheimer's Disease Based on Transgenic Anti-Nerve Growth Factor AntibodiesMolecular and Cellular Neuroscience, 21
G. Forloni, L. Colombo, L. Girola, F. Tagliavini, M. Salmona (2001)
Anti‐amyloidogenic activity of tetracyclines: studies in vitroFEBS Letters, 487
Yunxia Wang, K. Santa-Cruz, C. DeCarli, Jeffrey Johnson (2000)
NAD(P)H:quinone oxidoreductase activity is increased in hippocampal pyramidal neurons of patients with alzheimer’s diseaseNeurobiology of Aging, 21
M. Goedert, M. Spillantini (2006)
A Century of Alzheimer's DiseaseScience, 314
M. Rosini, V. Andrisano, M. Bartolini, M. Bolognesi, P. Hrelia, A. Minarini, A. Tarozzi, C. Melchiorre (2005)
Rational approach to discover multipotent anti-Alzheimer drugs.Journal of medicinal chemistry, 48 2
Tina Rees, P. Hammond, H. Soreq, S. Younkin, Stephen Brimijoin (2003)
Acetylcholinesterase promotes beta-amyloid plaques in cerebral cortexNeurobiology of Aging, 24
S. Sinha, John Anderson, R. Barbour, G. Basi, R. Caccavello, D. Davis, Minhtam Doan, H. Dovey, N. Frigon, Jin Hong, Kirsten Jacobson-Croak, N. Jewett, P. Keim, J. Knops, I. Lieberburg, M. Power, H. Tan, G. Tatsuno, J. Tung, D. Schenk, P. Seubert, S. Suomensaari, Shuwen Wang, D. Walker, Jun Zhao, L. McConlogue, V. John (1999)
Purification and cloning of amyloid precursor protein β-secretase from human brainNature, 402
M. Bolognesi, M. Bartolini, A. Cavalli, V. Andrisano, M. Rosini, A. Minarini, C. Melchiorre (2004)
Design, synthesis, and biological evaluation of conformationally restricted rivastigmine analogues.Journal of medicinal chemistry, 47 24
M. Bolognesi, V. Andrisano, M. Bartolini, R. Banzi, C. Melchiorre (2005)
Propidium-based polyamine ligands as potent inhibitors of acetylcholinesterase and acetylcholinesterase-induced amyloid-beta aggregation.Journal of medicinal chemistry, 48 1
C. Rice-evans, N. Miller (1994)
Total antioxidant status in plasma and body fluids.Methods in enzymology, 234
M. Bolognesi, A. Minarini, V. Tumiatti, C. Melchiorre (2006)
Lipoic acid, a lead structure for multi-target-directed drugs for neurodegeneration.Mini reviews in medicinal chemistry, 6 11
I. Dewachter, F. Leuven (2002)
Secretases as targets for the treatment of Alzheimer's disease: the prospectsThe Lancet Neurology, 1
K. Santacruz, E. Yazlovitskaya, J. Collins, Jeff Johnson, C. DeCarli (2004)
Regional NAD(P)H:quinone oxidoreductase activity in Alzheimer’s diseaseNeurobiology of Aging, 25
H. Klafki, M. Staufenbiel, J. Kornhuber, J. Wiltfang (2006)
Therapeutic approaches to Alzheimer's disease.Brain : a journal of neurology, 129 Pt 11
Hong-yu Zhang (2005)
One‐compound‐multiple‐targets strategy to combat Alzheimer's diseaseFEBS Letters, 579
M. Bartolini, C. Bertucci, V. Cavrini, V. Andrisano (2003)
beta-Amyloid aggregation induced by human acetylcholinesterase: inhibition studies.Biochemical pharmacology, 65 3
L. Piazzi, A. Rampa, A. Bisi, S. Gobbi, F. Belluti, A. Cavalli, M. Bartolini, V. Andrisano, P. Valenti, M. Recanatini (2003)
3-(4-[[Benzyl(methyl)amino]methyl]phenyl)-6,7-dimethoxy-2H-2-chromenone (AP2238) inhibits both acetylcholinesterase and acetylcholinesterase-induced beta-amyloid aggregation: a dual function lead for Alzheimer's disease therapy.Journal of medicinal chemistry, 46 12
C. Melchiorre, V. Andrisano, M. Bolognesi, R. Budriesi, A. Cavalli, V. Cavrini, M. Rosini, V. Tumiatti, M. Recanatini (1998)
Acetylcholinesterase noncovalent inhibitors based on a polyamine backbone for potential use against Alzheimer's disease.Journal of medicinal chemistry, 41 22
S. Capsoni, A. Cattaneo (2006)
On the Molecular Basis Linking Nerve Growth Factor (NGF) to Alzheimer’s DiseaseCellular and Molecular Neurobiology, 26
R. Vassar, M. Citron (2000)
Aβ-Generating Enzymes Recent Advances in β- and γ-Secretase ResearchNeuron, 27
A. Mordente, G. Martorana, Giorgio Minotti, Bruno Giardina (1998)
Antioxidant properties of 2,3-dimethoxy-5-methyl-6-(10-hydroxydecyl)-1,4-benzoquinone (idebenone).Chemical research in toxicology, 11 1
N. Inestrosa, A. Álvarez, C. Pérez, R. Moreno, M. Vicente, C. Linker, O. Casanueva, C. Soto, J. Garrido (1996)
Acetylcholinesterase Accelerates Assembly of Amyloid-β-Peptides into Alzheimer's Fibrils: Possible Role of the Peripheral Site of the EnzymeNeuron, 16
Young-Hwa Kang, J. Pezzuto (2004)
Induction of quinone reductase as a primary screen for natural product anticarcinogens.Methods in enzymology, 382
Hongshun Wang, J. Joseph (1999)
Quantifying cellular oxidative stress by dichlorofluorescein assay using microplate reader.Free radical biology & medicine, 27 5-6
Sights set on a cure: Memoquin (1) affects several mechanisms relevant to Alzheimer's disease (AD): the formation of reactive oxygen species, the processing and aggregation of amyloid β (Aβ) peptides, and acetylcholinesterase activity. In animal models, 1 causes a remarkable decrease in the formation of AD neurodegenerative hallmarks and a significant reversal of behavioral deficits. hAChE, BACE‐1, and NQO1 are enzymes targeted by 1.
Angewandte Chemie International Edition – Wiley
Published: May 11, 2007
Read and print from thousands of top scholarly journals.
Already have an account? Log in
Bookmark this article. You can see your Bookmarks on your DeepDyve Library.
To save an article, log in first, or sign up for a DeepDyve account if you don’t already have one.
Copy and paste the desired citation format or use the link below to download a file formatted for EndNote
Access the full text.
Sign up today, get DeepDyve free for 14 days.
All DeepDyve websites use cookies to improve your online experience. They were placed on your computer when you launched this website. You can change your cookie settings through your browser.