Get 20M+ Full-Text Papers For Less Than $1.50/day. Start a 7-Day Trial for You or Your Team.

Learn More →

Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes.

Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes. The synthesis and characterization of dimeric, aryl-substituted bis(imino)pyridine iron dinitrogen complexes is described. In contrast to reduction with sodium amalgam where bis(chelate) iron compounds were isolated, stirring ((Ar)PDI)FeBr(2) or ((Me)BPDI)FeBr(2) (PDI = 2,6-(ArN=CMe)(2)C(5)H(3)N; Ar = 2,6-Et(2)-C(6)H(3)N ((Et)PDI), 2,6-Me(2)-C(6)H(3)N ((Me)PDI), 2-(i)Pr,6-Me-C(6)H(3)N ((Me,iPr)PDI); (Me)BPDI = 2,6-(2,6-Me(2)-C(6)H(3)N=CPh)(2)C(5)H(3)N) with sodium naphthalenide resulted in isolation of the desired iron dinitrogen compounds as diamagnetic solids. Two examples, [((Et)PDI)Fe(N(2))](2)(mu(2)-N(2)) and [((Me)BPDI)Fe(N(2))](2)(mu(2)-N(2)), were characterized by X-ray diffraction. The solid state metrical parameters, in combination with infrared and Mossbauer spectroscopic data, establish ferrous compounds with doubly reduced chelates. Each new bis(imino)pyridine iron dinitrogen compound was screened for the catalytic hydrogenation of ethyl-3-methylbut-2-enoate, and the compound bearing the smallest aryl substituent, [((Me)PDI)Fe(N(2))](2)(mu(2)-N(2)), offers significant improvement over the original ((iPr)PDI)Fe(N(2))(2) pre-catalyst and is one of the most active iron pre-catalysts known. http://www.deepdyve.com/assets/images/DeepDyve-Logo-lg.png Inorganic Chemistry Pubmed

Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes.

Inorganic Chemistry , Volume 49 (6): -2689 – Jun 1, 2010

Synthesis of aryl-substituted bis(imino)pyridine iron dinitrogen complexes.


Abstract

The synthesis and characterization of dimeric, aryl-substituted bis(imino)pyridine iron dinitrogen complexes is described. In contrast to reduction with sodium amalgam where bis(chelate) iron compounds were isolated, stirring ((Ar)PDI)FeBr(2) or ((Me)BPDI)FeBr(2) (PDI = 2,6-(ArN=CMe)(2)C(5)H(3)N; Ar = 2,6-Et(2)-C(6)H(3)N ((Et)PDI), 2,6-Me(2)-C(6)H(3)N ((Me)PDI), 2-(i)Pr,6-Me-C(6)H(3)N ((Me,iPr)PDI); (Me)BPDI = 2,6-(2,6-Me(2)-C(6)H(3)N=CPh)(2)C(5)H(3)N) with sodium naphthalenide resulted in isolation of the desired iron dinitrogen compounds as diamagnetic solids. Two examples, [((Et)PDI)Fe(N(2))](2)(mu(2)-N(2)) and [((Me)BPDI)Fe(N(2))](2)(mu(2)-N(2)), were characterized by X-ray diffraction. The solid state metrical parameters, in combination with infrared and Mossbauer spectroscopic data, establish ferrous compounds with doubly reduced chelates. Each new bis(imino)pyridine iron dinitrogen compound was screened for the catalytic hydrogenation of ethyl-3-methylbut-2-enoate, and the compound bearing the smallest aryl substituent, [((Me)PDI)Fe(N(2))](2)(mu(2)-N(2)), offers significant improvement over the original ((iPr)PDI)Fe(N(2))(2) pre-catalyst and is one of the most active iron pre-catalysts known.

Loading next page...
 
/lp/pubmed/synthesis-of-aryl-substituted-bis-imino-pyridine-iron-dinitrogen-d0XsEYzH3G

References

References for this paper are not available at this time. We will be adding them shortly, thank you for your patience.

ISSN
0020-1669
DOI
10.1021/ic902162z
pmid
20143847

Abstract

The synthesis and characterization of dimeric, aryl-substituted bis(imino)pyridine iron dinitrogen complexes is described. In contrast to reduction with sodium amalgam where bis(chelate) iron compounds were isolated, stirring ((Ar)PDI)FeBr(2) or ((Me)BPDI)FeBr(2) (PDI = 2,6-(ArN=CMe)(2)C(5)H(3)N; Ar = 2,6-Et(2)-C(6)H(3)N ((Et)PDI), 2,6-Me(2)-C(6)H(3)N ((Me)PDI), 2-(i)Pr,6-Me-C(6)H(3)N ((Me,iPr)PDI); (Me)BPDI = 2,6-(2,6-Me(2)-C(6)H(3)N=CPh)(2)C(5)H(3)N) with sodium naphthalenide resulted in isolation of the desired iron dinitrogen compounds as diamagnetic solids. Two examples, [((Et)PDI)Fe(N(2))](2)(mu(2)-N(2)) and [((Me)BPDI)Fe(N(2))](2)(mu(2)-N(2)), were characterized by X-ray diffraction. The solid state metrical parameters, in combination with infrared and Mossbauer spectroscopic data, establish ferrous compounds with doubly reduced chelates. Each new bis(imino)pyridine iron dinitrogen compound was screened for the catalytic hydrogenation of ethyl-3-methylbut-2-enoate, and the compound bearing the smallest aryl substituent, [((Me)PDI)Fe(N(2))](2)(mu(2)-N(2)), offers significant improvement over the original ((iPr)PDI)Fe(N(2))(2) pre-catalyst and is one of the most active iron pre-catalysts known.

Journal

Inorganic ChemistryPubmed

Published: Jun 1, 2010

There are no references for this article.